

ROT 031.1

0.5 to 1.5

1.5 to 15

Above 15

17.6 to 53

53 to 529.7

Above 529.7

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		MO	DEL DATA - FO	OR COMPRESSE) AIR	
1	Manufacturer	FS-C	urtis			
	Model Numb	er: NxV0	08-100		Date:	03/03/21
2	X Air-c	Air-cooled Water-cooled Type: Scr				Screw
					# of Stages:	1
3*	Full Load Op	erating Press	ure ^b	100		psig
4	Drive Motor	Nominal Rat	ing	10		hp
5	Drive Motor		ý	87.7		percent
6			g (if applicable)	N/A		hp
7	Fan Motor No	ominal Effici	ency	N/A	S	percent pecific Power
	Input Pow	er (kW)		Capacity (acfm) ^{a,d}		W/100 acfm) ^d
	9.6			45.98		20.88
8*	8.5			40.22	2	21.13
	7.3			34.56	2	21.12
	6.3			28.63	2	2.00
		4.0 16.96 23.58				
9* 10	-	Package Input Power at Zero Flowc, a0.0kWopic Efficiency60.90%			kW	
-		,		ļ		
		30.00				
11	Specific Power (kW/100 ACFN)	30.00 25.00 20.00 15.00				
11	Specific Power (kW/100 ACFM)	25.00	20.00	30.00	40.00	
11	Specific Power (kW/100 ACFM)	25.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	30.00 Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity	40.00 Section 8 ssary above 35	
		25.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, (Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece	Section 8 ssary above 35	
For mode	els that are tested in	25.00 20.00 15.00 10.00 10.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, (Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve	Section 8 ssary above 35	
For mode	els that are tested in CAGI website for a l a. Measurec ACFM is b. The opera c. No Load manufact d. Tolerance	25.00 20.00 15.00 10	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 Formance Verification P nts in the third party ver e terminal point of the con t per minute at inlet cond which the Capacity (Item rdance with ISO 1217, Ar not significant" or "0" on ISO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. n 8) and Electrical Consumpti nexe E, if measurement of no the test report.	Section 8 ssary above 35 rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were : load power equal	d party administrate 7, Annex E; measured for this data
For mode Consult C NOTES:	els that are tested in CAGI website for a l a. Measured ACFM is b. The opera c. No Load manufact d. Tolerance NOTE: 1	25.00 20.00 15.00 10	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 Formance Verification P nts in the third party ver e terminal point of the con t per minute at inlet cond which the Capacity (Item rdance with ISO 1217, Ar not significant" or "0" on ISO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: npressor package in accordan itions. a 8) and Electrical Consumpt inex E, if measurement of no the test report. own in table below: nymous for purposes of this o	Section 8 ssary above 35 rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were load power equal locument.	d party administrate 7, Annex E; measured for this data
For mode Consult C NOTES:	els that are tested in CAGI website for a l a. Measured ACFM is b. The opera c. No Load manufact d. Tolerance NOTE: 1 Volume Flo at specified e	25.00 20.00 15.00 10	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P nts in the third party ver e terminal point of the cor t per minute at inlet cond which the Capacity (Item relance with ISO 1217, Arn not significant" or "0" on ISO 1217, Annex E, as sh er" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. a 8) and Electrical Consumpt inex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy Consumption	Section 8 ssary above 35 rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were : load power equal locument.	d party administrate 7, Annex E; measured for this data
For mode Consult C NOTES:	els that are tested in CAGI website for a l a. Measured ACFM is b. The opera c. No Load manufact d. Tolerance NOTE: 1 Volume Fle at specified c m ³ /min f	25.00 20.00 15.00 10	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, Tormance Verification P nts in the third party ver e terminal point of the cor et per minute at inlet cond which the Capacity (Item rdance with ISO 1217, Ar not significant" or "0" on ISO 1217, Annex E, as sh rr" and "energy" are synor Volume Flow Rate %	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: npressor package in accordan itions. a 8) and Electrical Consumpt inex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy Consumption %	Section 8 ssary above 35 rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were : load power equal locument.	d party administrate 7, Annex E; measured for this data
For mode Consult C NOTES:	els that are tested in CAGI website for a l a. Measured ACFM is b. The opera c. No Load manufact d. Tolerance NOTE: 1 Volume Fle at specified c m ³ /min f	25.00 20.00 15.00 10	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P nts in the third party ver e terminal point of the cor t per minute at inlet cond which the Capacity (Item relance with ISO 1217, Arn not significant" or "0" on ISO 1217, Annex E, as sh er" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. a 8) and Electrical Consumpt inex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy Consumption	Section 8 ssary above 35 rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were : load power equal locument.	d party administrate 7, Annex E; measured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

+/- 6

+/- 5

+/- 4

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	Manufacturer: FS-C	Curtis				
	Model Number: NxV	08-125		Date:	03/03/21	
2	X Air-cooled	Water-cooled		Type:	Screw	
				# of Stages:	1	
3*	Full Load Operating Pres	sure	125	6	psig ^b	
4	Drive Motor Nominal Ra	tor Nominal Rating 10 hp				
5	Drive Motor Nominal Eff					
6	Fan Motor Nominal Ratir	or Nominal Rating (if applicable) N/A hp				
7	Fan Motor Nominal Effic	tor Nominal Efficiency N/A perce			percent	
	Input Power (kW)		Capacity (acfm) ^{a,d}		pecific Power W/100 acfm) ^d	
	9.5		40.48		3.47	
8*	8.3		35.43	2	3.43	
	6.7		30.38	2	2.05	
	5.7		25.16	2	2.66	
	4.5		15.09	2	9.82	
9*	Total Package Input Pow	er at Zero Flow ^{c, d}	0.0		kW	
10	Isentropic Efficiency	ppic Efficiency 58.00 %				
11	30.00 30.00 25.00 20.00 20.00 20.00					
	15.00	20.00	30.00	40.00	50.00	
		Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, -	Capacity (ACFM) and representation of the data in > 5kW100acfm increments if nece 0 to 25% over maximum capacity			
nsult C IOTES:	ACFM is actual cubic fe b. The operating pressure a c. No Load Power. In acco	nts in the third party ver ge terminal point of the cor et per minute at inlet condi t which the Capacity (Item rdance with ISO 1217, An 'not significant' or "0" on ISO 1217, Annex E, as sh	ification program: npressor package in accordan itions. 8) and Electrical Consumpt: nex E, if measurement of no the test report. own in table below:	www.cagi.org nce with ISO 1217 ion (Item 8) were a load power equal	7, Annex E; measured for this data	
stitute	NOTE: The terms "pow	er" and "energy" are synor	lymous for purposes of this t			
stitute	NOTE: The terms "pow Volume Flow Rate at specified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power		

Me

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

2 X Air-cooled Type: Server we of Stages: 1 3* Full Load Operating Pressure b 150 psig 4 Drive Motor Nominal Rating 10 https://www.server.org/server.o	Model Number: NxV0 X Air-cooled Full Load Operating Press Drive Motor Nominal Rating Fan Motor Nominal Rating Fan Motor Nominal Rating Fan Motor Nominal Efficition Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Power	B-150 Water-cooled rre ^b ng ciency c (if applicable)	10 87.7 N/A Capacity (acfm) ^{a,d} 35.81 32.71	Type: # of Stages: Spe (kW 26. 26.	psig ^b hp percent hp percent ecific Power 7/100 acfm) ^d 81	
2 X Air-cooled Water-cooled Type: Server # of Stages: 1 3* Full Load Operating Pressure b 150 psig 4 Drive Motor Nominal Rating 10 https://www.server.org/linear server.org/linear server.	X Air-cooled Full Load Operating Press Drive Motor Nominal Ration Drive Motor Nominal Ration Fan Motor Nominal Ration Fan Motor Nominal Ration Fan Motor Nominal Efficient Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Power	Water-cooled rre ^b ng ciency (if applicable)	10 87.7 N/A Capacity (acfm) ^{a,d} 35.81 32.71	Type: # of Stages: Spe (kW 26. 26.	Screw 1 psig ^b hp percent hp percent cific Power 7/100 acfm) ^d 81	
Image: Second Stages: 1 3* Full Load Operating Pressure 150 4 Drive Motor Nominal Rating 10 5 Drive Motor Nominal Efficiency 87.7 6 Fan Motor Nominal Efficiency 87.7 7 Fan Motor Nominal Efficiency N/A 7 Fan Motor Nominal Efficiency N/A 9.6 35.81 26.81 8* 8.7 32.71 26.60 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	Full Load Operating Press Drive Motor Nominal Rating Fan Motor Nominal Rating Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe	ng siency ((if applicable)	10 87.7 N/A Capacity (acfm) ^{a,d} 35.81 32.71	# of Stages:	1 psig ^b hp percent hp percent scific Power 7/100 acfm) ^d 81	
3* Full Load Operating Pressure # of Stages: 1 3* Full Load Operating Pressure 150 psig 4 Drive Motor Nominal Rating 10 https://www.statube/https://wwww.statube/htttps://wwwwwwwwwwwwwwwwwwwwww	Full Load Operating Press Drive Motor Nominal Rating Fan Motor Nominal Rating Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe	ng siency ((if applicable)	10 87.7 N/A Capacity (acfm) ^{a,d} 35.81 32.71	# of Stages:	1 psig ^b hp percent hp percent scific Power 7/100 acfm) ^d 81	
3* Full Load Operating Pressure 150 psig 4 Drive Motor Nominal Rating 10 hp 5 Drive Motor Nominal Efficiency 87.7 perce 6 Fan Motor Nominal Rating (if applicable) N/A hp 7 Fan Motor Nominal Efficiency N/A perce 7 Fan Motor Nominal Efficiency N/A perce 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) 9.6 35.81 26.81 26.81 8* 8.7 32.71 26.60 6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 60.20 %	Drive Motor Nominal Rati Drive Motor Nominal Effi Fan Motor Nominal Rating Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe	ng :iency ; (if applicable)	10 87.7 N/A Capacity (acfm) ^{a,d} 35.81 32.71	Spe (kW 26. 26.	psig ^b hp percent hp percent ecific Power 7/100 acfm) ^d 81	
4 Drive Motor Nominal Rating 10 hr 5 Drive Motor Nominal Efficiency 87.7 perc 6 Fan Motor Nominal Rating (if applicable) N/A hr 7 Fan Motor Nominal Efficiency N/A perc 7 Fan Motor Nominal Efficiency N/A perc 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 9.6 35.81 26.81 8* 8.7 32.71 26.60 6.1 23.30 26.18 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	Drive Motor Nominal Rati Drive Motor Nominal Effi Fan Motor Nominal Rating Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe	ng ciency ((if applicable)	10 87.7 N/A Capacity (acfm) ^{a,d} 35.81 32.71	(kW 26. 26.	hp percent hp percent ecific Power 7/100 acfm) ^d 81	
5 Drive Motor Nominal Efficiency 87.7 perc 6 Fan Motor Nominal Rating (if applicable) N/A http 7 Fan Motor Nominal Efficiency N/A perc 7 Fan Motor Nominal Efficiency N/A perc 8 Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 9.6 35.81 26.81 8.7 32.71 26.60 6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 60.20 %	Drive Motor Nominal Effi Fan Motor Nominal Rating Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe	ciency ; (if applicable)	87.7 N/A N/A Capacity (acfm) ^{a,d} 35.81 32.71	(kW 26. 26.	percent hp percent ecific Power 7/100 acfm) ^d 81	
6Fan Motor Nominal Rating (if applicable)N/Ahr7Fan Motor Nominal EfficiencyN/Aperc7Input Power (kW)Capacity (acfm)^{a,d}Specific Power9.635.8126.818*8.732.7126.606.726.4525.336.123.3026.185.216.0532.409*Total Package Input Power at Zero Flow60.20%	Fan Motor Nominal Rating Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe	(if applicable)	N/A N/A Capacity (acfm) ^{a,d} 35.81 32.71	(kW 26. 26.	hp percent ccific Power //100 acfm) ^d 81	
7 Fan Motor Nominal Efficiency N/A perc Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) 9.6 35.81 26.81 8* 8.7 32.71 26.60 6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	Fan Motor Nominal Effici Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe		N/A Capacity (acfm) ^{a,d} 35.81 32.71	(kW 26. 26.	percent ecific Power 7/100 acfm) ^d 81	
Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) 9.6 35.81 26.81 8* 8.7 32.71 26.60 6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	Input Power (kW) 9.6 8.7 6.7 6.1 5.2 Total Package Input Powe		Capacity (acfm) ^{a,d} 35.81 32.71	(kW 26. 26.	ecific Power 7/100 acfm) ^d 81	
9.6 35.81 26.81 8* 8.7 32.71 26.60 6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	9.6 8.7 6.7 6.1 5.2 Total Package Input Powe		35.81 32.71	26. 26.	.81	
8* 8.7 32.71 26.60 6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	8.7 6.7 6.1 5.2 Total Package Input Powe		32.71	26.		
6.7 26.45 25.33 6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	6.7 6.1 5.2 Total Package Input Powe				(0	
6.1 23.30 26.18 5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	6.1 5.2 Total Package Input Powe		26.45	1	.00	
5.2 16.05 32.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	5.2 Total Package Input Powe			25.	.33	
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 60.20 %	Total Package Input Powe		23.30	26.	.18	
9* 10tal Package Input Power at Zero Flow 0.0 KV 10 Isentropic Efficiency 60.20 %			16.05	32.	.40	
	Isentropic Efficiency	al Package Input Power at Zero Flow 0.0 kW				
35.00		tropic Efficiency 60.20 %				
11 25.00 15.00 11	25.00 VICLW 25.00 VICLW 20.00 VICLW					
10.00 20.00 30.00 40.00 50.00		20.00	30.00	40.00	50.00	
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity		Note: Graph is only a vis ote: Y-Axis Scale, 10 to 35, -	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nec	1 Section 8		

M

		ime Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3} / \underline{min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

			N	IODEL DATA - F	OR COMPRESSE	U AIR	
1	Manufac	cturer:	FS	S-Curtis			
	Model N	Jumber	r: Ny	xV08-175		Date:	03/03/21
2	x	Air-co	oled	Water-cooled		Type:	Screw
						# of Stages:	1
3*	Full Loa	d Oper	rating Pi	ressure	175	l or sugest	psig
4	Drive M	lotor N	ominal	Rating	10		hp
5	Drive M	lotor N	ominal	Efficiency	87.7		percent
6	Fan Mot	or Noi	ninal Ra	ating (if applicable)	N/A		hp
7	Fan Mot	or Noi	ninal Ef	ficiency	N/A		percent
	Input	Power	r (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
		9.1			29.02		31.36
8*	ļ	8.7			27.03		32.19
		7.8			24.53		31.80
		6.9			21.96		31.42
		6.1		c, d	15.53		39.28
9*		I otal Package Input Power at Zero Flow 0.0 kW					
10	Isentropi	ic Effi	ciency		60.50		%
11		Specific Power (kW/100 ACFM)	35.00 30.00 25.00 20.00 15.00 10.00 10.00		20.00 Capacity (ACFM) isual representation of the data in	Section 8	30.00
				Note: Y-Axis Scale, 10 to 35 X-Axis Scale,	, + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are very	essary above 35	
Norre	AC b. The	CFM is a e operation Load P	ctual cubi ing pressu ower. In a	c feet per minute at inlet con- re at which the Capacity (Iter accordance with ISO 1217, A ate "not significant" or "0" or	m 8) and Electrical Consumpt nnex E, if measurement of no n the test report.	ion (Item 8) were load power equ	e measured for this data
NOTES: GI as institute	ma d. Tol	lerance i	is specified	d in ISO 1217, Annex E, as s power" and "energy" are sync	onymous for purposes of this of	locument.	
GI	ma d. Tol NC Volu	lerance i DTE: Th	is specified ne terms "p v Rate	oower" and "energy" are syno	onymous for purposes of this of Specific Energy	Zero Flow	
GI	ma d. Tol NC Volu	lerance i DTE: Th me Flow	is specified ne terms "p v Rate		onymous for purposes of this o	NO LOAU /	
GI	ma d. Tol NC Volu at spec	lerance i DTE: Th me Flov eified con <u>ft³</u>	is specified ne terms "p v Rate nditions	vower" and "energy" are sync	Specific Energy Consumption	Zero Flow Power	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

ROT 031.1

1.5 to 15

Above 15

53 to 529.7

Above 529.7

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

	T	IVIC	JUEL DATA - F	OR COMPRESSEI	JAIK	
1	Manufacturer	: FS-C	Curtis			
	Model Numbe	er: NxV	11-100		Date:	03/03/21
2	X Air-c	cooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	erating Pres	sure	100	" of Buges.	psig ^b
4	Drive Motor 1			15		hp
5	Drive Motor 1	Nominal Ef	ficiency	88.7		percent
6	Fan Motor No	ominal Rati	ng (if applicable)	N/A		hp
7	Fan Motor No	ominal Effic	viency	N/A		percent
	Input Powe	er (kW)		Capacity (acfm) ^{a,d}		Specific Power cW/100 acfm) ^d
	13.7	7		65.41	:	20.88
8*	11.9)		57.61		20.66
	9.9			49.46	1	20.02
	8.0			41.39		19.33
	4.0		c, d	20.86		19.18
9*		otal Package Input Power at Zero Flow 0.0 kW				
10	Isentropic Eff	ïciency		67.20		%
11	Specific Power (RW100 ACFM)	25.00 20.00 15.00 10.00		Capacity (ACFM) isual representation of the data in		00 70.00
				+ 5kW/100acfm increments if nece 0 to 25% over maximum capacity	·	
			rformance Verification I ants in the third party ve	Program, these items are ve rification program:	rified by the thin www.cagi.org	rd party administrato
Consult C NOTES:	AGI website for a li a. Measured ACFM is b. The opera c. No Load manufactu d. Tolerance	ist of particip l at the dischar actual cubic fo ating pressure a Power. In acc urer may state e is specified ir	ants in the third party ve ge terminal point of the co eet per minute at inlet com at which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" or n ISO 1217, Annex E, as s	rification program: mpressor package in accordan ditions. n 8) and Electrical Consumpti nnex E, if measurement of no n the test report.	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa document.	7, Annex E; measured for this data
Consult C NOTES:	AGI website for a li a. Measured ACFM is b. The opera c. No Load manufact d. Tolerance NOTE: T Volume Flo at specified co	ist of particip l at the dischar actual cubic fă ating pressure <i>a</i> Power. In acc urer may state e is specified ir Che terms "pow ow Rate onditions	ants in the third party ve ge terminal point of the cc eet per minute at inlet com at which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" or ISO 1217, Annex E, as s yeer" and "energy" are sync Volume Flow Rate	erification program: pmpressor package in accordand ditions. n 8) and Electrical Consumpti nnex E, if measurement of no the test report. hown in table below: onymous for purposes of this of Specific Energy Consumption	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa locument. <u>No Load</u> Zero Flow <u>Power</u>	7, Annex E; measured for this data
Consult C	AGI website for a li a. Measured ACFM is b. The opera c. No Load manufact d. Tolerance NOTE: T Volume Fle at specified co <u>m³/min</u> f	ist of particip at the dischar actual cubic fa ating pressure : Power. In acc urer may state e is specified ir The terms "pow	ants in the third party ve ge terminal point of the cc eet per minute at inlet com at which the Capacity (Itei ordance with ISO 1217, A "not significant" or "0" or ISO 1217, Annex E, as s yer" and "energy" are sync	erification program: pmpressor package in accordand ditions. n 8) and Electrical Consumpti nnex E, if measurement of no the test report. hown in table below: onymous for purposes of this of Specific Energy	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa locument.	7, Annex E; measured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 Model Number: NxV11-125 Date: 03/03/21 2 Image: I					OR COMPRESSEI			
2 X Air-cooled Water-cooled Type: Screw # fol Stages: 1 3* Full Load Operating Pressure 125 psig ^b 4 Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Efficiency N/A hp 7 Fan Motor Nominal Efficiency N/A percent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 12.9 57.32 22.26 9.4 41.81 22.48 7.7 34.12 22.57 5.0 18.24 27.41 9* 0.0 kW 10 Isentropic Efficiency 65.60 % 11 $40.00 - 30.00 - 30.00 - 50.00 - 60.00$ 60.00 y^{ay} 0.0 kW 0.00 - 0.00 - 0.00 10 Isentropic Efficiency 0.00 - 0.00 - 0.00 - 0.00 60.00 - 0	1	Manuf	acturer: FS-C	Curtis				
11		Model	Number: NxV	11-125		Date:	03/03/21	
3^* Full Load Operating Pressure b125psig b4Drive Motor Nominal Rating15hp5Drive Motor Nominal Efficiency88.7percent6Fan Motor Nominal EfficiencyN/Ahp7Fan Motor Nominal EfficiencyN/Apercent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power1149.8722.269.441.8122.487.734.1222.575.018.2427.419*0.0kW10Isentropic Efficiency65.609,00 $_{5.60}$ $_{9.60}$ $_{15,00}$ $_{25,00}$ $_{20,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ <	2	X	Air-cooled	Water-cooled		Type:	Screw	
3^* Full Load Operating Pressure b125psig b4Drive Motor Nominal Rating15hp5Drive Motor Nominal Efficiency88.7percent6Fan Motor Nominal EfficiencyN/Ahp7Fan Motor Nominal EfficiencyN/Apercent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power1149.8722.269.441.8122.487.734.1222.575.018.2427.419*0.0kW10Isentropic Efficiency65.609,00 $_{5.60}$ $_{9.60}$ $_{15,00}$ $_{25,00}$ $_{20,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ $_{30,00}$ $_{10,00}$ $_{20,00}$ <							1	
4Drive Motor Nominal Rating15hp5Drive Motor Nominal Efficiency88.7percent6Fan Motor Nominal EfficiencyN/Ahp7Fan Motor Nominal EfficiencyN/Apercent7Fan Motor Nominal EfficiencyN/Apercent8*Input Power (kW)Capacity (acfm) ^{a.d} Specific Power8*11.149.8722.269.441.8122.487.734.1222.575.018.2427.419*0.0kW10Isentropic Efficiency65.609.4 40.00 50.00 10Jsentropic Efficiency 65.60 9.6 50.00 $9.60.00$ 10KW 10.00 10.00 11 10.00 10.00 20.00 10.00 20.00 30.00 40.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 50.00 10.00 10.00 <td< td=""><td>3*</td><td>Full Lo</td><td>ad Operating Pres</td><td>sure</td><td></td><td>" of Buges.</td><td>psig</td></td<>	3*	Full Lo	ad Operating Pres	sure		" of Buges.	psig	
6Fan Motor Nominal Rating (if applicable)N/Ahp7Fan Motor Nominal EfficiencyN/Apercent7Input Power (kW)Capacity (acfm) ^{a,d} Specific Power8*12.957.3222.518*11.149.8722.269.441.8122.487.734.1222.575.018.2427.419*0.0kW10Isentropic Efficiency65.609,4 $\sqrt{9,000}$ $\sqrt{9,000}$ 10 $\sqrt{9,000}$ $\sqrt{9,000}$ 11 $\sqrt{9,000}$ $\sqrt{9,000}$ 12.1 $\sqrt{9,000}$ $\sqrt{9,000}$ 13.2 $\sqrt{9,000}$ $\sqrt{9,000}$ 14 $\sqrt{9,000}$ $\sqrt{9,000}$ 15.0 $\sqrt{9,000}$ $\sqrt{9,000}$ 10Isentropic Efficiency $\sqrt{9,000}$ 11 $\sqrt{9,000}$ $\sqrt{9,000}$ 12.1 $\sqrt{9,000}$ $\sqrt{9,000}$ 13.00 $\sqrt{9,000}$ $\sqrt{9,000}$ 14.1 $\sqrt{9,000}$ $\sqrt{9,000}$ 15.0 $\sqrt{9,000}$ $\sqrt{9,000}$ 10.0 $\sqrt{9,000}$ $\sqrt{9,000}$ 1	4	Drive I	Motor Nominal Ra	ting	15			
6Fan Motor Nominal Rating (if applicable)N/Ahp7Fan Motor Nominal EfficiencyN/Apercent7Input Power (kW)Capacity (acfm) ^{a,d} Specific Power8*12.957.3222.518*11.149.8722.269.441.8122.487.734.1222.575.018.2427.419*0.0kW10Isentropic Efficiency65.609,4 $\sqrt{9,000}$ $\sqrt{9,000}$ 10 $\sqrt{9,000}$ $\sqrt{9,000}$ 11 $\sqrt{9,000}$ $\sqrt{9,000}$ 12.1 $\sqrt{9,000}$ $\sqrt{9,000}$ 13.2 $\sqrt{9,000}$ $\sqrt{9,000}$ 14 $\sqrt{9,000}$ $\sqrt{9,000}$ 15.0 $\sqrt{9,000}$ $\sqrt{9,000}$ 10Isentropic Efficiency $\sqrt{9,000}$ 11 $\sqrt{9,000}$ $\sqrt{9,000}$ 12.1 $\sqrt{9,000}$ $\sqrt{9,000}$ 13.00 $\sqrt{9,000}$ $\sqrt{9,000}$ 14.1 $\sqrt{9,000}$ $\sqrt{9,000}$ 15.0 $\sqrt{9,000}$ $\sqrt{9,000}$ 10.0 $\sqrt{9,000}$ $\sqrt{9,000}$ 1	5							
$11 \qquad $	6							
11 11 $Input Power (kW)$ $Capacity (acfm)4.d (kW/100 acfm)d (kW/100 acfm)d (kW/100 acfm)d (kW/100 acfm)d 12.9 57.32 22.51 22.6 9.4 41.81 22.48 7.7 34.12 22.57 5.0 18.24 27.41 9* 0.0 kW 10 Isentropic Efficiency 65.60 % 10 Isentropic Efficiency 65.60 % 10 Isentropic Efficiency 65.60 % Note: Graph is only a visual representation of the data in Section 8 Note: Y-Chi Steal, U to 32, 54 WW100 acfm) I = 10$	7	Fan Mo	lotor Nominal Efficiency N/A per			percent		
8* 11.1 49.87 22.26 9.4 41.81 22.48 7.7 34.12 22.57 5.0 18.24 27.41 9* 0.0 kW 10 Isentropic Efficiency 65.60 % 1000 35.00 25.00 % 1000		Inpi	at Power (kW)		Capacity (acfm) ^{a,d}	-		
$11 \qquad \begin{array}{ c c c c c c } \hline 9.4 & 41.81 & 22.48 \\ \hline 7.7 & 34.12 & 22.57 \\ \hline 5.0 & 18.24 & 27.41 \\ \hline 9^* & 0.0 & kW \\ \hline 10 & \text{Isentropic Efficiency} & 65.60 & 9 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$			12.9		57.32			
$11 \qquad \begin{array}{ c c c c c c } \hline 7.7 & 34.12 & 22.57 \\ \hline 5.0 & 18.24 & 27.41 \\ \hline 9^* & 0.0 & kW \\ \hline 10 & Isentropic Efficiency & 65.60 & \% \\ \hline 10 & \frac{1}{1500} & \frac{40.00}{35.00} & \frac{30.00}{25.00} & \frac{30.00}{25.00} & \frac{30.00}{25.00} & \frac{30.00}{15.00} & \frac{30.00}{15.00} & \frac{30.00}{15.00} & \frac{30.00}{15.00} & \frac{1}{100} & \frac{1}{100$	8*		11.1		49.87	22	2.26	
$11 \qquad 5.0 \qquad 18.24 \qquad 27.41 \\ 9^* \qquad 0.0 \qquad kW \\ 10 \qquad \text{Isentropic Efficiency} \qquad 65.60 \qquad \% \\ 10 \qquad \text{Isentropic Efficiency} \qquad 65.60 \qquad \% \\ 11 \qquad 0.0 \qquad kW \\ 10 \qquad \text{Isentropic Efficiency} \qquad 65.60 \qquad \% \\ 11 \qquad 0.0 \qquad 0.0 \qquad 0.0 \qquad 0.0 \qquad \% \\ 10 \qquad 0.0 \qquad 0.0 \qquad 0.0 \qquad 0.0 \qquad \% \\ 10 \qquad 0.0 \qquad$			9.4		41.81	22	2.48	
9* 0.0 kW 10 Isentropic Efficiency 65.60 % 11 Isentropic Efficiency 25.00 % 11 5.00 5.00 5.00 60.00 6			7.7		34.12	22	2.57	
10 Isentropic Efficiency 65.60 % 11 Isentropic Efficiency 65.60 % 11 Isentropic Efficiency 65.60 % 11 Isentropic Efficiency 65.60 % 11 Isentropic Efficiency 10.00 % 12 Isentropic Efficiency 10.00 % 12 Isentropic Efficiency 10.00 % 12 Isentropic Efficiency 10.00 % 13 Isentropic Efficiency 10.00 % 14 Isentropic Efficiency 10.00 % 15 Isentropic Efficiency $10.$			5.0		18.24	27	7.41	
11 11 11 11 11 11 11 11 11 11	9*						kW	
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1	10	Isentro	tropic Efficiency 65.60 %					
10.00 20.00 30.00 40.00 50.00 60.00 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	11		25.00					
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35				20.00	30.00 40.00	50.00	60.00	
			10.00	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35	Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece	Section 8	00.00	
	Consult C	CAGI websit a. M b. T c. N d. T	e for a list of participa Aeasured at the dischar ACFM is actual cubic fo 'he operating pressure a log Load Power. In acce nanufacturer may state 'olerance is specified in	ants in the third party ve ge terminal point of the co et per minute at inlet com- t which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" or ISO 1217, Annex E, as s	rification program: mpressor package in accordan ditions. n 8) and Electrical Consumpti nnex E, if measurement of no the test report. hown in table below:	www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals	Annex E; heasured for this data	
 NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, moniforture moutoff impaction impaction impacts and impact and impact to the test report. 								
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below:						NO LOau /		
 Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. 				Volume Flow Rate		Zero Flow		

M

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / \min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		MODEL DATA -	FOR COMPRESSE	D AIR	
1	Manufacturer:	FS-Curtis			
	Model Number:	NxV11-150		Date:	03/03/21
2	X Air-cooled	X Air-cooled Water-cooled Type:			
				# of Stages:	1
3*	Full Load Operatin	g Pressure ^b	150	" of blagest	psig ^b
4	Drive Motor Nomi	nal Rating	15		hp
5	Drive Motor Nomi	nal Efficiency	88.7		percent
6		l Rating (if applicable)	N/A		hp
7	Fan Motor Nomina		N/A	Spe	percent cific Power
	Input Power (kV	V)	Capacity (acfm) ^{a,d}	-	/100 acfm) ^d
	13.0		50.97	25.	
8*	11.2		44.19	25.	35
	9.3		37.03	25.	
	7.6		30.02	25.	
9*	5.3		<u> </u>	27.0	04 kW
10	Isentropic Efficient	77	64.60		<u> </u>
11	30.0 25.0 Sbecific Power (KN)100 4750 20.0 15.0	0			
	10.0	0 20.00	30.00 40.00	50.00	60.00
			Capacity (ACFM)	Soction 8	
		Note: Y-Axis Scale, 10 to	a visual representation of the data in 35, + 5kW/100acfm increments if nece le, 0 to 25% over maximum capacity		
Consult C NOTES:	CAGI website for a list of p a. Measured at the ACFM is actual b. The operating pp c. No Load Power. manufacturer ma d. Tolerance is spe	Note: Y-Axis Seale, 10 to X-Axis Sec AGI Performance Verification articipants in the third party discharge terminal point of the cubic feet per minute at inlet or essure at which the Capacity (1 In accordance with ISO 1217, y state "not significant" or "0" cified in ISO 1217, Annex E, at	35, + 5kW/100acfm increments if nece le, 0 to 25% over maximum capacity n Program, these items are very verification program: compressor package in accorda anditions. tem 8) and Electrical Consumpt Annex E, if measurement of ne on the test report.	rified by the third p www.cagi.org nce with ISO 1217, A ion (Item 8) were mea load power equals le	nnex E; asured for this data
	CAGI website for a list of p a. Measured at the ACFM is actual b. The operating pp c. No Load Power. manufacturer ma d. Tolerance is spe	Note: Y-Axis Seale, 10 io X-Axis Sci AGI Performance Verification articipants in the third party discharge terminal point of the cubic feet per minute at inlet or essure at which the Capacity (I In accordance with ISO 1217, sy state "not significant" or "0" cified in ISO 1217, Annex E, a ns "power" and "energy" are sy	55, + 5kW/100acfm increments if nece le, 0 to 25% over maximum capacity 1 Program, these items are ve verification program: compressor package in accorda notions. tem 8) and Electrical Consumpt Annex E, if measurement of ne on the test report. shown in table below: nonymous for purposes of this o Specific Energy	rified by the third p www.cagi.org nce with ISO 1217, A ion (Item 8) were mea load power equals le	nnex E; asured for this data
onsult C NOTES:	CAGI website for a list of p a. Measured at the ACFM is actual b. The operating pr c. No Load Power, manufacturer ma d. Tolerance is spe NOTE: The tern Volume Flow Rate	Note: Y-Axis Seale, 10 io X-Axis Sea AGI Performance Verification articipants in the third party discharge terminal point of the cubic feet per minute at inlet or essure at which the Capacity (I In accordance with ISO 1217, sy state "not significant" or "0" cified in ISO 1217, Annex E, at ns "power" and "energy" are sy by Nolume Flow Rat	55, + 5kW/100acfm increments if nece le, 0 to 25% over maximum capacity 1 Program, these items are ve verification program: compressor package in accorda notions. tem 8) and Electrical Consumpt Annex E, if measurement of ne on the test report. shown in table below: nonymous for purposes of this o Specific Energy	rified by the third p www.cagi.org nee with ISO 1217, A ion (Item 8) were mea load power equals le document.	nnex E; asured for this data

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / \min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

	Rotary Compressor:	Variable Frequency Drive
--	---------------------------	--------------------------

2 X Air-cooled Water-cooled Type: Scree # of Stages: 1 3* Full Load Operating Pressure 9 175 psig 4 Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Rating (if applicable) N/A hp 7 Fan Motor Nominal Efficiency 88.7 percector 6 Fan Motor Nominal Efficiency NA percector 7 Fan Motor Nominal Efficiency NA percector 11 12.8 44.47 28.78 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 15 max max max 15.0 max max max max 16 Isentropic Efficiency 62.80 % % 17 Max Max max max max <	Т		MO	DEL DATA - F	OR COMPRESSEI) AIR	
2 X Air-cooled Water-cooled Type: Scree # of Stages: 1 3* Full Load Operating Pressure 9 175 psig 4 Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Rating (if applicable) N/A hp 7 Fan Motor Nominal Efficiency 88.7 percector 6 Fan Motor Nominal Efficiency NA percector 7 Fan Motor Nominal Efficiency NA percector 11 12.8 44.47 28.78 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 15 max max max 15.0 max max max max 16 Isentropic Efficiency 62.80 % % 17 Max Max max max max <	1	Manufacturer:	FS-Cu	urtis			
$11 \qquad \begin{array}{ c c } 1 \text{ An concerve} & 1 \text{ where concerve} \\ \hline & \text{ of Stages: } 1 \\ \hline & \text{ of Stages: }$		Model Number	r: NxV1	1-175		Date:	03/03/21
3* Full Load Operating Pressure ^b 175 psig 4 Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Rating (if applicable) N/A perce 6 Fan Motor Nominal Efficiency 88.7 perce 7 Fan Motor Nominal Efficiency N/A perce 10 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 11.2 38.77 28.89 9.0 32.34 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 Volume Efficiency 62.80 % 11 Volume Graptic top a visual representations of the data is Section 8 Note: Volume Finder Woll Monton 1000 11 Volume Graptic top avisual representation of the data is Section 8 Note: Volume Finder Woll Monton 1000 12.8 Volume Finder Participants in the third party verification program. volume Avis 0.00 South 0.00 13.00 20.00 20.00 South 0.00 South 0.00 South 0.00 13.00 20.00 </td <td>2</td> <td>X Air-co</td> <td>ooled</td> <td>Water-cooled</td> <td></td> <td>Туре:</td> <td>Screw</td>	2	X Air-co	ooled	Water-cooled		Туре:	Screw
3* Full Load Operating Pressure ^b 175 psig 4 Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Rating (if applicable) N/A perce 6 Fan Motor Nominal Efficiency 88.7 perce 7 Fan Motor Nominal Efficiency N/A perce 10 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 11.2 38.77 28.89 9.0 32.34 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 Volume Efficiency 62.80 % 11 Volume Graptic top a visual representations of the data is Section 8 Note: Volume Finder Woll Monton 1000 11 Volume Graptic top avisual representation of the data is Section 8 Note: Volume Finder Woll Monton 1000 12.8 Volume Finder Participants in the third party verification program. volume Avis 0.00 South 0.00 13.00 20.00 20.00 South 0.00 South 0.00 South 0.00 13.00 20.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>							1
5 Drive Motor Nominal Efficiency 88.7 perce 6 Fan Motor Nominal Efficiency N/A hp 7 Fan Motor Nominal Efficiency N/A perce Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 1000 2000 30.00 40.00 50.00 60.00 1000 2000 30.00 40.00 50.00 60.00 1100 2000 30.00 40.00 50.00 60.00 1000 2000 30.00 40.00 50.00 60.00 1000	3*	Full Load Ope	rating Press	ure ^b		6	psig ^b
6 Fan Motor Nominal Rating (if applicable) N/A hp 7 Fan Motor Nominal Efficiency N/A perce Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 12.8 44.47 28.78 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 9* 0.0 kW 0.0 kW 10 Isentropic Efficiency 62.80 % 0.0 constant second	4	Drive Motor N	Iominal Rati	ng	15		hp
7 Fan Motor Nominal Efficiency N/A perce Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 11.2 38.77 28.88 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 10 Sector (CFM) KW 10 Isentropic Efficiency 62.80 50.0 60.0 10 Sector (CFM) Net: Graph to the state step constants of the tail sectors 3 X-Ats Sale, 0 to 25% over maximum capacity 11 10 Sector (CFM) Net: Graph to the state step constants of the tail sectors 3 X-Ats Sale, 0 to 25% over maximum capacity 12.00 10.00 20.00 30.00 40.00 50.00 60.00 Volume Flow Rate constants in the third party confication program. VOWER: Note: Capacity (ICFM) Note: Sale: 10 the CAGI Performance Verification program. Swite state step constants and the data state step constants of the tail sectors 4 NOTE: Note: Sal	5	Drive Motor N	lominal Effi	ciency	88.7		percent
Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW) (kW100 acfm) ^d 12.8 44.47 25.78 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW100 10 Isentropic Efficiency 62.80 % 11 $\sqrt[40.00]{99.00}$ $\sqrt[30.00]{20.00}$ $\sqrt[30.00]{20.00}$ $\sqrt[30.00]{20.00}$ 10 Isentropic Efficiency 62.80 $\%$ $\sqrt[30.00]{20.00}$ $\sqrt[30.00]{20.$							hp
Input Power (kW) Capacity (acfm) ^{3,d} (kW/100 acfm) ^{3,d} 12.8 44.47 28.78 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 $\sqrt[4]{000}$ $\sqrt[6]{000}$ $\sqrt[6]{000}$ $\sqrt[6]{000}$ 10 Isentropic Efficiency 62.80 % 11 $\sqrt[6]{000}$ $\sqrt[6]{25.00}$ $\sqrt[6]{25.00}$ $\sqrt[6]{000}$ 10 Isentropic Efficiency 62.80 % $\sqrt[6]{000}$ 10 Isentropic Killion $\sqrt[6]{000}$ <td>7</td> <td></td> <td></td> <td>ency</td> <td></td> <td></td> <td>percent Specific Power</td>	7			ency			percent Specific Power
12.8 44.47 28.78 8* 11.2 38.77 28.89 9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 $\sqrt[40.00]{\frac{90.00}{25.00}}$ $\sqrt[30.00]{\frac{90.00}{25.00}}$ $\sqrt[30.00]{\frac{90.00}{25.00}}$ $\sqrt[30.00]{\frac{90.00}{25.00}}$ 11 $\sqrt[40.00]{\frac{90.00}{25.00}}$ $\sqrt[30.00]{\frac{90.00}{25.00}}$ $\sqrt[30.00]{\frac{90.00}{2$		Input Powe	r (kW)		Capacity (acfm) ^{a,d}		-
9.0 32.34 27.83 7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 $\sqrt[40,00]_{25,00}^{-1}$ $\sqrt[60,00]_{25,00}^{-1}$ $\sqrt[60,00]_{25,00}^{-1}$ 11 $\sqrt[40,00]_{25,00}^{-1}$ $\sqrt[60,00]_{20,00}^{-1}$ $\sqrt[60,00]_{20,00}^{-1}$ $\sqrt[60,00]_{20,00}^{-1}$ 15.00 $\sqrt[10,00]_{20,00}^{-1}$ $\sqrt[10,00]_{20,00}^{-1}$ $\sqrt[10,00]_{20,00}^{-1}$ $\sqrt[10,00]_{20,00}^{-1}$ $\sqrt[10,00]_{20,00}^{-1}$ 10 User Y-Ax8 Sele, 10 at 35, 45W (100.6cfn incensus f necessary above 35 Note: Y-Ax8 Sele, 10 at 25% over maximum capacity $\sqrt[10,00]_{20,00}^{-1}$		12.8			44.47		
7.3 26.21 27.85 4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 $\begin{pmatrix} 40.00 \\ 35.00 \\ 25.00 \\ 20.00 \\ 10.00 \\ 20.00 \\$	8*	11.2			38.77		28.89
4.8 15.77 30.44 9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11 $\begin{pmatrix} 40.00 \\ 0.00$		9.0					27.83
9* 0.0 kW 10 Isentropic Efficiency 62.80 % 11							
10 Isentropic Efficiency 62.80 % 10 Isentropic Efficiency 62.80 % 11	0*	4.8					
11 Image: constraint of the constraints of the constraint of the constrain	-	I. () E.C.					
10.00 20.00 30.00 40.00 50.00 60.00 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 0 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity PFor models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administr Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this of c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. A Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. INOTER: Volume Flow Rate Specific Energy Zero Flow Zero Flow More reflew Rate Volume Flow Rate Onewer Power at specified conditions Volume Flow Rate Yero Flow Power NOTE: The terms "power" and		wer JFMJ					
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity *For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administr Consult CAGI website for a list of participants in the third party verification program: www.cagi.org *NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this of c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate Specific Energy Zero Flow Power marking dial Volume Flow Rate You Power Power marking dial % % %	11	Specific Po (kW/100 AC	20.00				
Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this of . No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Zero Flow at specified conditions Volume Flow Rate Consumption main main % Main % %	11	Specific Po (KW/100 AC	20.00	2000	30,00 40,00	50.00	
Volume Flow Rate at specified conditions Specific Energy Volume Flow Rate Zero Flow Power $\underline{m^3 / min}$ $\underline{ft^3 / min}$ % % Below	11	Specific Po (kNV/100, AC	20.00	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35	Capacity (ACFM) isual representation of the data in , + 5kW/100acfm increments if nece	Section 8	60.00
Below	*For model Consult C4	ls that are tested in t AGI website for a lis a. Measured a ACFM is a b. The operat c. No Load P manufactu d. Tolerance	20.00 15.00 10	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35 X-Axis Scale formance Verification ats in the third party ve eterminal point of the cc t per minute at inlet con which the Capacity (Ite dance with ISO 1217, A not significant" or "0" on "00 SO 1217, Annex E, as s	Capacity (ACFM) isual representation of the data in , + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve prification program: propressor package in accordanditions. m 8) and Electrical Consumpti nnex E, if measurement of no the test report. hown in table below:	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 121 ion (Item 8) were load power equa locument.	rd party administrato .7, Annex E; e measured for this data
Below 17.6 +/- 7 +/- 8	*For model Consult C/ NOTES:	ls that are tested in t AGI website for a lis a. Measured a ACFM is a b. The operat c. No Load P manufactu d. Tolerance NOTE: Th Volume Flov at specified co	20.00 15.00 10	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35 X-Axis Scale ormance Verification its in the third party vo e terminal point of the co t per minute at inlet con which the Capacity (Ite dance with ISO 1217, A not significant" or "0" or SO 1217, Annex E, as s r" and "energy" are sync Volume Flow Rate	Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve prification program: propressor package in accordanditions. m 8) and Electrical Consumpti nnex E, if measurement of no n the test report. hown in table below: mymous for purposes of this of Specific Energy Consumption	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 121 ion (Item 8) were load power equa document.	rd party administrato .7, Annex E; e measured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

+/- 6

+/- 5

+/- 4

17.6 to 53

53 to 529.7

Above 529.7

0.5 to 1.5

1.5 to 15

Above 15

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

	T	MU	UEL DATA - FU	OR COMPRESSEI	JAIN	
1	Manufacturer	FS-Cu	ırtis			
	Model Numbe	er: NxV1	5-100		Date:	03/03/21
2	X Air-c	ooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	erating Press	ure	100	0	psig
4	Drive Motor M	Nominal Rati	ng	20		hp
5	Drive Motor N	Nominal Effi	ciency	88.7		percent
6	Fan Motor No	minal Rating	g (if applicable)	N/A		hp
7	Fan Motor No	minal Effici	ency	N/A		percent
	Input Powe	er (kW)		Capacity (acfm) ^{a,d}		pecific Power W/100 acfm) ^d
	17.5	5		84.25		20.77
8*	15.0			74.48	2	20.14
	13.1			64.32	2	20.37
	11.6	5		53.96	2	21.50
	7.6			32.44	2	23.43
9*	Total Package	Input Powe	r at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Eff	iciency		62.00		%
11	Specific Power (KW/100 ACFM)	30.00	Note: Graph is only a vis	Capacity (ACFM) ual representation of the data in		90.00 100.00
		I		 5kW/100acfm increments if nece to 25% over maximum capacity 	ssary above 55	
	CAGI website for a li : a. Measured ACFM is b. The opera c. No Load I manufactu d. Tolerance	the CAGI Perf st of participar at the discharge actual cubic fee ting pressure at Power. In accor urer may state "r is specified in I he terms "powe	X-Axis Scale, 0 ormance Verification Pr tts in the third party veri terminal point of the con t per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on t SO 1217, Annex E, as sho	to 25% over maximum capacity rogram, these items are ve ification program: npressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no he test report.	rified by the thir www.cagi.org nce with ISO 121' ion (Item 8) were load power equa	7, Annex E; measured for this data
Consult ONOTES	CAGI website for a li a. Measured ACFM is b. The opera c. No Load I manufactt d. Tolerance NOTE: T Volume Flo at specified co	the CAGI Perf st of participar at the discharge actual cubic fee ting pressure at Power. In accor Power. In accor Power. In accor is specified in I he terms "powe w Rate anditions	X-Axis Scale, 0 ormance Verification Pr its in the third party veri eterminal point of the con t per minute at inlet condi which the Capacity (Item dance with ISO 1217, Am ot significant" or "0" on t SO 1217, Annex E, as sho r" and "energy" are synon Volume Flow Rate	to 25% over maximum capacity ogram, these items are ve ification program: upressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no he test report. ymous for purposes of this of Specific Energy Consumption	rified by the thir www.cagi.org nee with ISO 1217 ion (Item 8) were load power equa document.	7, Annex E; measured for this data
Consult ONOTES	CAGI website for a li a. Measured ACFM is b. The opera c. No Load I manufact d. Tolerance NOTE: T Volume Flo at specified co <u>m³/min</u> <u>fi</u> Below	the CAGI Perfs st of participar at the discharge actual cubic fee ting pressure at Power. In accor rer may state "t is specified in I he terms "powe w Rate	X-Axis Scale, 0 ormance Verification Pr its in the third party veri e terminal point of the con t per minute at inlet condi which the Capacity (Item dance with ISO 1217, An iot significant" or "0" on t SO 1217, Annex E, as she r" and "energy" are synon	to 25% over maximum capacity ogram, these items are ve ification program: npressor package in accordan tions. 8) and Electrical Consumpti nex E, if measurement of no he test report. own in table below: ymous for purposes of this of Specific Energy	rified by the thir www.cagi.org hee with ISO 121' ion (Item 8) were load power equa locument. NO LOAD Zero Flow	7, Annex E; measured for this dat

M

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Т 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

Model Number: NxV15-125 Date: 12/09/21 2 X Air-cooled Type: Screw # of Stages: 1 1 3* Full Load Operating Pressure ^b 125 psig ^b 4 Drive Motor Nominal Rating 20 hp hp 5 Drive Motor Nominal Rating (if applicable) n/a hp 6 Fan Motor Nominal Efficiency 88.7 percent 7 Fan Motor Nominal Efficiency n/a percent 19.4 80 24.25 8* 16.2 69 23.48 13.1 56 23.39 10.3 43 23.95 7.5 30 25.00 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 62.90 % More Y-Aus Scale, 10:0.3 11 Model Number: State: Graph is only avisal representation of the data in Section 8 Note: Y-Aus Scale, 10:0.3 10 Isentropic Efficiency 62.90 % More Y-Aus Scale, 10:0.3 10.0 20.0 20.0	1	Manufacturer:	FS Cu	rtis				
2 X Air-cooled Type: Screw 3* Full Load Operating Pressure ^b 125 psig ^b 4 Drive Motor Nominal Rating 20 hp 5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Efficiency n/a hp 7 Fan Motor Nominal Efficiency n/a percent 8* 16.2 69 23.48 13.1 56 23.39 10.3 43 23.95 7.5 30 25.00 9* Total Package Input Power at Zero Flow ^C , ^d 0.0 kW 10 Isentropic Efficiency 62.90 % 11 V000 20.0 30.0 40.0 9.00 100.0 11 V0000 20.0 30.0 40.0 9.00 100.0 kW 11 V0000 20.0 30.0 40.0 9.00 100.0 kW 11 V0000 20.0 30.0 40.0 90.0 90.0 100.0 15.00		Model Number	: NxV14	5-125		Date:	12/09/21	
1 # of Stages: 1 3* Full Load Operating Pressure 125 psigb 4 Drive Motor Nominal Rating 20 hp 5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Efficiency 88.7 percent 7 Fan Motor Nominal Efficiency n/a hp 7 Fan Motor Nominal Efficiency n/a percent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 19.4 80 24.25 8* 16.2 69 23.48 13.1 56 23.39 10.3 43 23.95 7.5 30 25.00 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 62.90 % 11 	2	X Air-co						
3^* Full Load Operating Pressure125psight4Drive Motor Nominal Rating20hp5Drive Motor Nominal Efficiency88.7percent6Fan Motor Nominal Efficiencyn/ahp7Fan Motor Nominal Efficiencyn/apercent8*Input Power (kW)Capacity (acfm) ^{a.d} Specific Power8*16.26923.4813.15623.3910.34323.957.53025.009*Total Package Input Power at Zero Flow c. d0.0kW10Isentropic Efficiency62.90%Advo11 v_{000}^{000} <								
4Drive Motor Nominal Rating20hp5Drive Motor Nominal Efficiency88.7percent6Fan Motor Nominal Rating (if applicable)n/ahp7Fan Motor Nominal Efficiencyn/apercent7Fan Motor Nominal Efficiencyn/apercent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power19.48024.258*16.26923.4813.15623.3910.34323.957.53025.009*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency62.90%Note: Graph is not a single percention of the data in Section 8 Note: Y-Aus Scale, 10 to 3; + 3W/Willowfm uncenters if facesary above 35 X-Auis Scale, 10 to 3; + 3W/Willowfm uncenters if facesary above 35 X-Auis Scale, 10 to 3; + 3W/Willowfm uncenters if facesary above 35 X-Auis Scale, 10 to 3; + 3W/Willowfm uncenters if facesary above 35 X-Auis Scale, 10 to 3; + 3W/Willowfm uncenters if facesary above 35 X-Auis Scale, 10 to 3; + 3W/Willowfm uncenters if facesary above 35	3*	Full Load Oper	rating Pressur	b	125	# 01 Stages.	b	
5Drive Motor Nominal Efficiency88.7percent6Fan Motor Nominal Rating (if applicable) n/a hp7Fan Motor Nominal Efficiency n/a percent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8*19.48024.258*16.26923.4813.15623.3910.34323.957.53025.009*Total Package Input Power at Zero Flow c^c .0.0kW10Isentropic Efficiency62.90%100<	-	-	-				10	
6 Fan Motor Nominal Rating (if applicable) n/a hp 7 Fan Motor Nominal Efficiency n/a gercent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 16.2 69 23.48 13.1 56 23.39 10.3 43 23.95 7.5 30 25.00 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 62.90 % 11 15.00 15.00 25.00 % 11 Note: Graph Graph Context and the processary above 35 X-Axis Scale, 0 to 25% over maximum experity				0				
7 Fan Motor Nominal Efficiency n/a percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 19.4 80 24.25 8* 16.2 69 23.48 13.1 56 23.39 10.3 43 23.95 7.5 30 25.00 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 62.90 % 10 isentropic 25.00 30.00 50.00 9% 10 isentropic Efficiency 62.90 % 10 isentropic Efficiency 50.00 0.00 10.00 10.00 20.00 30.00 40.00 50.00 90.00 100.00 10.00 20.00 30.00 40.00 50.00 90.00 90.00 100.00 10.00 20.00 30.00 40.00 50.00 70.00 80.00 90.00 100.00 10.00 20.00 30.00 40.00 50.00 70.00 80.00 <t< td=""><td></td><td></td><td></td><td>ý</td><td></td><td></td><td></td></t<>				ý				
$11 \qquad $	7				n/a		percent	
$8* \frac{19.4}{13.1} \frac{80}{56} \frac{24.25}{23.39}$ $10.3 \frac{43}{23.95} \frac{23.60}{7.5} \frac{30}{30} \frac{25.00}{9*} \frac{7.5}{7.5} \frac{30}{30} \frac{25.00}{9*} \frac{9*}{10} \frac{10}{10} \frac{40.00}{5.00} \frac{62.90}{9} \frac{10}{9} \frac{10}{9}$		Input Powe	er (kW)		Capacity (acfm) ^{a,d}	-		
$8* \begin{array}{ c c c c c c c c c c c c c c c c c c c$			19.4		80			
$11 \qquad 13.1 \qquad 56 \qquad 23.39 \\ \hline 10.3 \qquad 43 \qquad 23.95 \\ \hline 7.5 \qquad 30 \qquad 25.00 \\ 9^* Total Package Input Power at Zero Flow c, d 10 Isentropic Efficiency 10 \qquad 10 \qquad 10 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 25.00 \qquad 9\% \\ \hline 10 \qquad 10 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 25.00 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline Capacity (ACFM) \\ Note: Graph is only a visual representation of the data in Section 8 \\ Note: Y-Axis Scale, 0 to 25\% over maximum capacity \\ \hline 10 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 \qquad 1000 \qquad 1000 \qquad 1000 \qquad 1000 \\ \hline 1000 \qquad 1000 $	8*				69			
11 11 10.3 43 23.95 7.5 30 25.00 W 10 Isentropic Efficiency 62.90 $%$ 10 10 10 10 10 10 10 10			13.1		56			
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 62.90 % 11 40.00 35.00 30.00 35.00 25.00 25.00 25.00 15.00 15.00 15.00 15.00 10.00 20.00 15.00 15.00 10.00 20.00 15.00 10.00 20.00 15.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 15.00 10.00 20.00					43			
9* Total Package Input Power at Zero Flow 0.0 RW 10 Isentropic Efficiency 62.90 %			7.5		30	25	.00	
11 40.00 35.00 30.00 25.00 15.00 10.00 40.00 25.00 20.00 15.00 10.00 40.00 25.00 20.00 10.00 40.00 20.00 40.00 20.00 <td< td=""><td>9*</td><td>Total Package</td><td>Input Power a</td><td>at Zero Flow ^{c, d}</td><td>0.0</td><td></td><td>kW</td></td<>	9*	Total Package	Input Power a	at Zero Flow ^{c, d}	0.0		kW	
11 11 11 11 11 11 11 11 11 11	10	Isentropic Effi	entropic Efficiency 62.90 %				%	
10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity			30.00					
Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity	11	Specific Power (kW/100 ACFM)	25.00					
	11	Specific Power ((W/100 ACFM)	25.00	(Capacity (ACFM)		90.00 100.00	
	or mode	ls that are tested in	25.00 20.00 15.00 10.00 10.00 N the CAGI Perfo	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, + X-Axis Scale, (Capacity (ACFM) ual representation of the data in 5 54W/100acfm increments if necess 0 to 25% over maximum capacity opgram, these items are veri	Section 8 ary above 35		
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data s c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, meanufacturer may state "post similificant" or "0" on the test report	For mode	els that are tested in AGI website for a li a. Measured ACFM is b. The opers c. No Load manufactu d. Tolerance	25.00 20.00 15.00 10.00 10.00 10.00 N the CAGI Perfo ist of participant at the discharge actual cubic feet ting pressure at v Power. In accord urer may state "me	Note: Graph is only a vis tote: Y-Axis Scale, 10 to 35, + X-Axis Scale, (rmance Verification Pre- is in the third party veri terminal point of the con per minute at inlet condi which the Capacity (Item lance with ISO 1217, Ann ot significant" or "0" on 1 SO 1217, Annex E, as sho	Capacity (ACFM) ual representation of the data in 5 5kW/100acfm increments if necess to 25% over maximum capacity orgram, these items are veri fication program: npressor package in accordant tions. 8) and Electrical Consumpti- nex E, if measurement of no 1 the test report. own in table below:	section 8 ary above 35 fied by the third pa www.cagi.org ce with ISO 1217, 4 on (Item 8) were me oad power equals le	rty administrator Annex E; asured for this data	
 ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data at c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: 	For mode Consult C NOTES:	els that are tested in AGI website for a li a. Measured ACFM is b. The opera c. No Load manufacti d. Tolerance NOTE: T	25.00 20.00 15.00 10.00 10.00 10.00 N the CAGI Perforic ist of participant at the discharge actual cubic feet thing pressure at v Power. In accord are may state "me- is specified in IS the terms "power" ww Rate	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, + X-Axis Scale, (rmance Verification Pre- is in the third party veri terminal point of the con per minute at inlet condi- which the Capacity (Item lance with ISO 1217, Ann ot significant" or "0" on t SO 1217, Annex E, as she " and "energy" are synony	Capacity (ACFM) ual representation of the data in 5 5kW/100acfm increments if necess to 25% over maximum capacity ogram, these items are veri fication program: apressor package in accordant tions. 8) and Electrical Consumpti- nex E, if measurement of no l the test report. swn in table below: ymous for purposes of this do Specific Energy	fied by the third pa www.cagi.org ce with ISO 1217, 4 on (Item 8) were me oad power equals le cument.	rty administrator Annex E; asured for this data	
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data is c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Zero Flow	For mode Consult C NOTES:	els that are tested in AGI website for a li a. Measured ACFM is b. The opera c. No Load manufacti d. Tolerance NOTE: T Volume Flc at specified e	25.00 20.00 15.00 10.00 10.00 10.00 N the CAGI Perfo ist of participant at the discharge actual cubic feet ting pressure at v Power. In accord urer may state "me is specified in IS 'he terms "power" ww Rate onditions	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, + X-Axis Scale, 0 rmance Verification Pre- is in the third party veri terminal point of the con per minute at inlet condi- which the Capacity (Item lance with ISO 1217, Ann ot significant" or "0" on t SO 1217, Annex E, as she " and "energy" are synony Volume Flow Rate	Capacity (ACFM) ual representation of the data in 5 5kW/100acfm increments if necess to 25% over maximum capacity ogram, these items are veri fication program: npressor package in accordant tions. 8) and Electrical Consumption the test report. Swn in table below: ymous for purposes of this do Specific Energy Consumption	fied by the third pa www.cagi.org ce with ISO 1217, 4 on (Item 8) were me oad power equals le cument.	rty administrator Annex E; asured for this data	

Compre

M Below 17.6 +/- 7 +/- 8 0.5 0.5 to 1.5 17.6 to 53 +/- 6 +/- 7 +/- 10% 1.5 to 15 53 to 529.7 +/- 6 +/- 5 Above 529.7 +/- 5 +/- 4 ROT 031.1 Above 15

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

2 X Air-cooled Water-cooled Type: Screw # of Stages: 1 3* Full Load Operating Pressure ^b 150 psig ^b 4 Drive Motor Nominal Rating 20 hp 5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Rating (if applicable) N/A hp	1	M	ODEL DATA - FO	OR COMPRESSEI) AIR	
2 X Air-cooled Type: Screw # of Stages: 3* Full Load Operating Pressure ^b 150 pisg ^b 4 Drive Motor Nominal Rating 20 hp 5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Efficiency 88.7 percent 7 Fan Motor Nominal Efficiency N/A hp 7 Fan Motor Nominal Efficiency N/A percent 8* 16.0 6.19.1 25.84 13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 50.60 % % 11 Viet Graphic usits find usits at tested in the CAGI Performance Verification Program, these items are verified by the third party administrat Consult CAGI website for a list of participants in the third party verification program: xww.exgitary ************************************	1	Manufacturer: FS-	Curtis			
Image: state of the second state state state state of the second state is the second state of the second state state state of the second state of the second state of the second state state state of the second state of the second state state state of the second state of the second state of the second state state s		Model Number: NxV	/15-150		Date:	03/03/21
3* Full Load Operating Pressure ^b 150 psight 4 Drive Motor Nominal Rating 20 hp 5 Drive Motor Nominal Rating (if applicable) N/A hp 6 Fan Motor Nominal Efficiency 88.7 percent 7 Fan Motor Nominal Efficiency N/A percent 8 16.0 61.91 25.84 17.7 70.47 25.12 8* 16.0 61.91 25.84 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{C,d} 0.0 kW 10 Isentropic Efficiency 59.60 $\%$ $\%$ 11 $\sqrt[90]{90}^{90}_{90}^{90}_{20.00}^{90}$	2	X Air-cooled	Water-cooled		Type:	Screw
3* Full Load Operating Pressure 150 psig 4 Drive Motor Nominal Rating 20 hp 5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Efficiency N/A hp 7 Fan Motor Nominal Efficiency N/A percent 8* Input Power (kW) Capacity (acfm) ^{a,d} (kW100 acfm) ^d 17.7 70.47 25.12 8* 16.0 61.91 25.84 13.8 53.01 26.03 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 59.60 % % 11 Vigg grad 20.0 30.0 40.0 50.0 70.0 80.0 10 Isentropic Efficiency 59.60 % 70.0 80.0 70.0 80.0 100 Sector As Sci.10 53.57 59.60 70.0 80.0 70.0 80.0 100 Sector As Sci.10 53.57 59.60 70.0 70.0 70.0 </td <td></td> <td></td> <td></td> <td></td> <td># of Stages:</td> <td>1</td>					# of Stages:	1
5 Drive Motor Nominal Efficiency 88.7 percent 6 Fan Motor Nominal Efficiency N/A hp 7 Fan Motor Nominal Efficiency N/A percent 10 Fan Motor Nominal Efficiency N/A percent 11 Fan Motor Nominal Efficiency N/A percent 12.5 45.19 25.84 13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow 6.0 kW 10 Isentropic Efficiency 59.60 $\%$ 11 $\sqrt[4]{99}{9}{9}{9}{2.50$	3*	Full Load Operating Pre	ssure	150		psig
6 Fan Motor Nominal Rating (if applicable) N/A hp 7 Fan Motor Nominal Efficiency N/A percent Input Power (kW) Capacity (acfm) ^{3,dd} Specific Power 17.7 70.47 25.12 8* 16.0 61.91 25.84 13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 59.60 % 10 Isentropic Efficiency 59.60 % 0 11 50.0 25.0 30.0 60.0 70.0 80.00 10 Isentropic Efficiency 59.60 % 0 50.0 50.0 50.00	4		0	20		hp
7 Fan Motor Nominal Efficiency N/A percent Input Power (kW) Capacity (acfm) ^{8,d} Specific Power 17.7 70.47 25.12 8* 16.0 61.91 25.84 13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{6,d} 0.0 kW 10 Isentropic Efficiency 59.60 $\%_0$ 11 $\sqrt[4]{99}$ $\frac{30.09}{20.09}$ $\frac{30.09}{20.09}$ $\frac{30.09}{20.09}$ $\frac{30.09}{20.09}$ 11 $\sqrt[4]{99}$ $\frac{30.09}{20.09}$ $30.$	5					percent
Input Power (kW) Capacity (acfm) ^{a.d} Specific Power (kW/100 acfm) ^d 8* 16.0 61.91 25.84 13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 59.60 % 10.0 20.00 30.00 Capacity (ACFM) Note: Graph is ady a visual representation of the data in Section 8 % */Ast State 10 v.3. * 51.01 2.5. * 51.01 % */State State 10 v.5. * 51.01 2.5. * 51.02 % */State State 10 v.5. * 51.01 2.5. * 51.02 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>÷</td>	-					÷
8* $\frac{17.7}{1.60}$ 8* $\frac{17.7}{1.60}$ $\frac{7.47}{2.5.12}$ 8* $\frac{16.0}{1.60}$ $\frac{61.91}{2.5.84}$ $\frac{13.8}{13.8}$ $\frac{53.01}{2.6.03}$ $\frac{12.5}{3.2.5}$ $\frac{9}{7}$ $\frac{17.7}{10 tal Package Input Power at Zero Flow 6, d}{0.0}$ $\frac{12.5}{45.19}$ $\frac{17.7}{2.5.2}$ $\frac{12.5}{45.19}$ $\frac{12.5}{3.5.25}$ $\frac{9^{*}}{10}$ $\frac{10}{10 tentropic Efficiency}$ $\frac{59.60}{\sqrt{6}}$ $\frac{10}{\sqrt{6}}$	7		ciency			percent Specific Power
8* 17.7 70.47 25.12 8* 16.0 61.91 25.84 13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 59.60 % 11 $40.00 - \frac{40.00}{50.00} - \frac{50.60}{50.00} - \frac{50.60}{9.00}$ % 11 $40.00 - \frac{40.00}{50.00} - \frac{50.60}{50.00} - \frac{50.60}{9.00} - \frac{50.00}{9.00}$ % 11 $40.00 - \frac{40.00}{50.00} - \frac{50.00}{50.00} - \frac{50.00}{50.00} - \frac{50.00}{70.00} - \frac{50.00}{80.00}$ % 11 $40.00 - \frac{50.00}{50.00} - \frac{50.00}{50.00} - \frac{50.00}{70.00} - \frac{50.00}{80.00}$ % 11 $40.00 - \frac{50.00}{50.00} - \frac{50.00}{50.00} - \frac{50.00}{70.00} - \frac{50.00}{80.00}$ % 11 $40.00 - \frac{50.00}{50.00} - \frac{50.00}{50.00} - \frac{50.00}{50.00} - \frac{50.00}{70.00} - \frac{50.00}{80.00}$ % 12 Mes Craph is any a visual representation of the data in Section 8 Not: 'A visi Scale, 0 to 25% sover maximum capacity * Port models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrate Consult CAGI website for a list of participants in the third party verification program: withis 105		Input Power (kW)		Capacity (acfm) ^{a,d}		-
13.8 53.01 26.03 12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 59.60 % 10 Isentropic Efficiency 59.60 % 11		17.7		70.47		
12.5 45.19 27.66 9.0 25.62 35.25 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 59.60 $%_0$ 11 $\sqrt[4]{0.00}$ $\sqrt[4]{0.00}$ $\sqrt[6]{0.00}$ $\sqrt[6]{0.00}$ 11 $\sqrt[6]{0.00}$ $\sqrt[6]{0.00}$ $\sqrt[6]{0.00}$ $\sqrt[6]{0.00}$ $\sqrt[6]{0.00}$ 11 $\sqrt[6]{0.00}$ <t< td=""><td>8*</td><td>16.0</td><td></td><td>61.91</td><td></td><td>25.84</td></t<>	8*	16.0		61.91		25.84
9.0 25.62 35.25 9* Total Package Input Power at Zero Flow 6.0 kW 10 Isentropic Efficiency 59.60 % 10 Isentropic Efficiency 59.60 % 11						
9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 59.60 % 11 40.00 35.00 30.00 35.00 30.00 35.00 30.00 30.00						
10 Isentropic Efficiency 59.60 % 11	0*		c, d			
11 Imagine Enterine 12 Imagine Enterine 13 Imagine Enterine 14 Imagine Enterine 15 Imagine Enterine 15 Imagine Enterine 10 Imagine Enterine 10 Imagine Enterine 10 Imagine Enterine 11 Imagine Enterine 11 Imagine Enterine 12 Imagine Enterine 13 Imagine Enterine 14 Imagine Enterine 15 Imagine Enterine 15 Imagine Enterine 15 Imagine Enterine 16 Imagine Enterine 17 Imagine Enterine 18 Imagine Enterine 19 Imagine Enterine 19 Imagine Enterine 10	-		ver at Zero Flow			
 *For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrat Consult CAGI website for a list of participants in the third party verification program, these items are verified by the third party administrat Consult CAGI website for a list of participants in the third party verification program: www.cagi.org *NotE: *NotE: * A Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this dat • No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. • Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. × Volume Flow Rate 		କ 🐔				
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity *For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrat Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this date c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate Specific Energy Zero Flow Power marking ft ³ /min % % %	11					
Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data cubic of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data cubic of the compressor package in accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate Specific Energy Zero Flow at specified conditions Volume Flow Rate Onsumption Power main % % %	11	15.00				
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this date. c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy at specified conditions Volume Flow Rate Main % % %	11	15.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece	Section 8	70.00 80.00
Volume Flow Rate at specified conditions Specific Energy Consumption Zero Flow Power m³/min ft³/min % % Below	*For mod Consult (els that are tested in the CAGI Pe CAGI website for a list of particip	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 0 orformance Verification P nants in the third party ver	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program:	Section 8 ssary above 35 rified by the thi www.cagi.org	rd party administrato
Below	*For mod Consult (NOTES	els that are tested in the CAGI Pe CAGI website for a list of particip : a. Measured at the discha ACFM is actual cubic f b. The operating pressure c. No Load Power. In act manufacturer may state d. Tolerance is specified i	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, erformance Verification P poants in the third party ver rge terminal point of the con cet per minute at inlet cond at which the Capacity (Item vordance with ISO 1217, Ar "not significant" or "0" on n ISO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. (8) and Electrical Consumpti mex E, if measurement of no the test report. own in table below:	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 12 ion (Item 8) were load power equa	rd party administrato 7, Annex E; e measured for this data
	*For mod Consult (NOTES	els that are tested in the CAGI Pe CAGI website for a list of particip : a. Measured at the discha ACFM is actual cubic f b. The operating pressure c. No Load Power. In act manufacturer may state d. Tolerance is specified i NOTE: The terms "por	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, erformance Verification P wants in the third party ver rge terminal point of the cor eet per minute at inlet cond at which the Capacity (Item cordance with ISO 1217, An "not significant" or "0" on n ISO 1217, Annex E, as sh wer" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. a) and Electrical Consumpti incex E, if measurement of no the test report. own in table below: nymous for purposes of this consumption	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 121 ion (Item 8) were load power equ: locument.	rd party administrato 7, Annex E; e measured for this data

	$\underline{\mathbf{m}}$ / $\underline{\mathbf{m}}$	n / mm	70	70	70
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
31.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

1.5 to 15

Above 15

53 to 529.7

Above 529.7

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

	Rotary Compressor:	Variable Frequency Drive
--	---------------------------	--------------------------

			M	DDEL DATA - F	OR COMPRESSE	D AIR	
1	Manufa	acturer:	FS-	Curtis			
	Model	Number	r: NxV	/15-175		Date:	03/03/21
2	X	Air-co	oled	Water-cooled		Туре:	Screw
						# of Stages:	1
3*	Full Lo	ad Oper	rating Pres	ssure	175	" of buges.	psig ^b
4		-	ominal Ra		20		hp
5	Drive M	Motor N	ominal Ef	ficiency	88.7		percent
6	Fan Mo	otor Noi	ninal Rati	ng (if applicable)	N/A		hp
7	Fan Mo	otor Noi	ninal Effi	ciency	N/A		percent
	Inpu	it Powe	r (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
		18.0			64.94		27.72
8*		15.7			57.00		27.54
		14.0			48.89		28.64
		12.4			40.37		30.72
		10.7		c, d	31.67		33.79
9*		-	-	ver at Zero Flow ^{C, U}	0.0		kW
10	Isentro	pic Effi	ciency		50.90		%
11		Specific Power (kW/100 ACFM)	30.00 25.00 20.00 15.00 10.00 10.00	Note: Graph is only a v	40.00 50.00 Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece	Section 8	70.00 80.00
	CAGI website	e for a lis Ieasured a	t of particip at the dischar	X-Axis Scale, rformance Verification I ants in the third party ve ge terminal point of the cc eet per minute at inlet com	0 to 25% over maximum capacity Program, these items are ve prification program: pompressor package in accorda	rified by the thi www.cagi.org nce with ISO 121 ion (Item 8) were	7, Annex E;
NOTES:	A b. T c. N m d. T	he operation lo Load Popantianufacture in the second secon	ower. In acc er may state is specified in	ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as sl			
GI	A b. T c. N m d. T	he operation lo Load Popantianufacture in the second secon	ower. In acc er may state is specified in	ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as sl	h the test report. hown in table below:		
GI	A b. T c. N m d. T N Vol	The operation of the op	ower. In acc rer may state is specified in the terms "pow w Rate	ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as sl	a the test report. hown in table below: nymous for purposes of this of Specific Energy	locument.	
GI	A b. T c. N m d. T N Vol at spe <u>m³ / min</u>	the operation operation of the operation operation of the	ower. In acc rer may state is specified in the terms "pow w Rate	ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as si wer" and "energy" are sync	a the test report. hown in table below: onymous for purposes of this o	locument. No Load / Zero Flow	
GI	A b. T c. N m d. T N Vol at spe	the operation of the op	ower. In acc rer may state is specified in the terms "pow w Rate nditions	ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as si wer" and "energy" are synce Volume Flow Rate	a the test report. hown in table below: nymous for purposes of this of Specific Energy Consumption	locument. Zero Flow Power	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

ROT 031.1

1.5 to 15

Above 15

53 to 529.7

Above 529.7

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

2 [lanufacturer:				D AIR	
2		FS-C	urtis			
	lodel Numbe	r: NxV	18-100		Date:	03/03/21
	X Air-co	ooled	Water-cooled		Type:	Screw
					# of Stages:	1
3* Fu	ull Load Ope	rating Press	sure ^b	100	" of Buges.	psig
	rive Motor N			25		hp
5 D	rive Motor N	lominal Eff	ïciency	91.7		percent
6 Fa	an Motor No	minal Ratin	g (if applicable)	1		hp
7 Fa	an Motor No	minal Effic	iency	82.5		percent
	Input Powe	r (kW)		Capacity (acfm) ^{a,d}		Specific Power cW/100 acfm) ^d
	22.3			112.0		19.91
8*	19.1			96.8	-	19.73
	16.1			81.4		19.78
	13.3			65.4		20.34
	7.1		c, d	33.4		21.26
		•	er at Zero Flow ^{c, d}	0.0		kW
10 Is	entropic Effi	ciency		65.80		%
11	Specific Power (KW/100 A.CFM)	25.00	25.0	50.0 75.0 Capacity (ACFM)	100.0	125.0
			Note: Y-Axis Scale, 10 to 35, X-Axis Scale,	isual representation of the data in ,+ 5kW/100acfm increments if nece 0 to 25% over maximum capacity	ssary above 35	
	a. Measured a ACFM is a b. The operat c. No Load P	at the discharg actual cubic fe ing pressure a ower. In acco rer may state '	nts in the third party ve e terminal point of the co et per minute at inlet com t which the Capacity (Iter rdance with ISO 1217, A not significant" or "0" or ISO 1217, Annex E, as s	ompressor package in accordat ditions. m 8) and Electrical Consumpt: nnex E, if measurement of no n the test report.	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa	7, Annex E; measured for this data
NOTES:	d. Tolerance	ne terms "pow	er und energy die syne			
GI	d. Tolerance			Specific Energy	Zero Flow	
Institute	d. Tolerance NOTE: TI Volume Flow at specified co	v Rate nditions	Volume Flow Rate	Consumption	Zero Flow Power	
GI	d. Tolerance NOTE: Th Volume Flow at specified co <u>min ft²</u> ow Bel	v Rate			Zero Flow	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 Model Number: NxV18-125 Date: 03/03/21 2 Image: I	Model Number:NxV18-125Date: $03/03/21$ 2 $\overline{\mathbf{X}}$ Air-cooledWater-cooledType: $\overline{\mathbf{Screw}}$ # of Stages:11 \mathbf{b}^{b} \mathbf{b}^{c} \mathbf{b}^{c} 3*Full Load Operating Pressure25 \mathbf{b}^{b} \mathbf{b}^{c} \mathbf{b}^{c} 4Drive Motor Nominal Rating25 \mathbf{b}^{p} \mathbf{b}^{c} \mathbf{b}^{c} 5Drive Motor Nominal Rating (if applicable)1 \mathbf{b}^{p} \mathbf{b}^{c} 6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow $\mathbf{c}^{c, d}$ 0.0 \mathbf{kW} 10Isentropic Efficiency61.30%Viscue Capabeter of the data in Section 8 v_{ood} v_{oo		1			OR COMPRESSE		
2XAir-cooledWater-cooledType:Screw # of Stages:3*Full Load Operating Pressure125psig4Drive Motor Nominal Rating25hp5Drive Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent8Input Power (kW)Capacity (acfm)32.3.2102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow61.30%10Isentropic Efficiency61.30%Input Power at Zero Flow11Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Crapk is only a visual representation of the data in Section 8 Net: Cr	2 X Air-cooled Type: Screw 3* Full Load Operating Pressure 125 psig ^b 4 Drive Motor Nominal Rating 25 hp 5 Drive Motor Nominal Efficiency 91.7 percent 6 Fan Motor Nominal Efficiency 82.5 percent 7 Fan Motor Nominal Efficiency 82.5 percent 8* 20.2 89.1 22.67 17.7 75.5 23.44 15.2 61.4 24.76 10.6 32.8 32.32 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 61.30 % 11 1000000000000000000000000000000000000	1	Manufactur	er: FS-C	Curtis			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Model Num	iber: NxV	18-125		Date:	03/03/21
3^* Full Load Operating Pressure b125psig b4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*102.423.2102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency61.30%40.00Use of the function of the data in Section 811Net: Craph is only a visual representation of the data in Section 8Net: Craph is only a visual representation of the data in Section 8	3^* Full Load Operating Pressure b125psigb4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow c, d 0.0kW10Isentropic Efficiency61.30%Capacity (ACFM)11 v_{000}^{00} v_{250}^{00} 100 v_{250}^{00} v_{250}^{00} 11 v_{000}^{00} v_{250}^{00} 12 v_{250}^{00} v_{250}^{00} 13 v_{250}^{00} v_{250}^{00} 14 v_{250}^{00} v_{250}^{00} 15 v_{250}^{00} v_{250}^{00} 16 v_{250}^{00} v_{250}^{00} 17 v_{250}^{00} v_{250}^{00} 18 v_{250}^{00} v_{250}^{00} 19 v_{250}^{00} v_{250}^{00} 10 v_{250}^{00} v_{250}^{00} 10 $v_{$	2	X Air	-cooled	Water-cooled		Type:	Screw
3^* Full Load Operating Pressure125psig4Drive Motor Nominal Rating25hp5Drive Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*23.2102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency61.30%full Configure of the configure of	3^* Full Load Operating Pressure125psig4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency61.30%40.00Value of the data in Section 3 Note: Y-Axis Seale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments if necessary above 35 X-Axis Scale, 10 to 35, +5% W/100acfm increments						# of Stages:	1
5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency1hp7Fan Motor Nominal Efficiency82.5percent8Input Power (kW)Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow61.30%10Isentropic Efficiency61.30%Note: Graph is only a visual representation of the data in Section 8 Note: Graph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual represent	5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8Input Power (kW)Capacity (acfm) ^{a,d} Specific Power8*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow c, d 0.0kW10Isentropic Efficiency61.30%Isentropic Efficiency9.6 35.00 50.0 35.00 50.0 75.0 100.0 10.00 50.0 50.0 75.0 11.1 10.00 10.00 10.00 125.0 Capacity (AcFM)Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axia Scale, 10 to 25% over maximum capacity	3*	Full Load C	perating Pres	sure	125		psig ^b
6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent7Input Power (kW)Capacity (acfm) ^{a,d} Specific Power8*23.2102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency61.30%Volume of the data in Section 8Net: Graph is Sule, 10 to 35, 50, 50, 75, 100, 125,0Net: Graph is Sule, 10 to 35, 50, 75, 100, 125,0Net: Graph is Sule, 10 to 35, 50, 90, 75,0 100, 125,0Net: Graph is Sule, 10 to 35, 54, 54,000, 55, 50,00 75,0 100,0 125,0	6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent7Input Power (kW)Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8*23.2102.422.668*20.289.122.6717.775.523.4415.261.424.7610.632.832.329*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency61.30%Implementation of the data in Section 8 Note: VAxia Scale, 10 to 25% over maximum capacityNote: Craph is only a visual representation of the data in Section 8 Note: YAxia Scale, 10 to 25% over maximum capacity	4	Drive Moto	r Nominal Ra	ting	25		hp
7 Fan Motor Nominal Efficiency 82.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 23.2 102.4 22.66 8* 20.2 89.1 22.67 17.7 75.5 23.44 15.2 61.4 24.76 10.6 32.8 32.32 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 61.30 % (www.www.www.www.www.www.www.www.www.ww	7 Fan Motor Nominal Efficiency 82.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 23.2 102.4 22.66 8* 20.2 89.1 22.67 17.7 75.5 23.44 15.2 61.4 24.76 10.6 32.8 32.32 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 61.30 % 11 v_{000}^{0} v_{000}^{0} v_{000} v_{000} 10 Isentropic Efficiency 61.30 % 11 v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} 11 v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} 11 v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} 10 Isentropic Efficiency v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} 10.00 v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000}^{0} v_{000	5	Drive Moto	r Nominal Eff	ĩciency	91.7		percent
$11 \qquad 11 \qquad \qquad$	$11 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Fan Motor	Nominal Ratir	ng (if applicable)	1		hp
$11 \qquad $	$11 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	Fan Motor	Nominal Effic	iency	82.5	S.	
$11 \qquad \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$11 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Input Po	wer (kW)		Capacity (acfm) ^{a,d}	-	
11 11 11 11 11 11 11 11	$11 \qquad 11 $		23	3.2		102.4		
$15.2 \qquad 61.4 \qquad 24.76$ $10.6 \qquad 32.8 \qquad 32.32$ 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 10 Isentropic Efficiency $61.30 \qquad \%$ $10 \qquad 100 \qquad 1000 \qquad 10000 \qquad $	11 11 11 11 15.2 61.4 24.76 32.8 32.32 $9*$ $Total Package Input Power at Zero Flow c, d 0.0 KW 10 Isentropic Efficiency 61.30 % 10 10 10 10 10 10 10 10$	8*	20).2		89.1	22	2.67
11 10.6 32.8 32.32 $9*$ Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 61.30 $%$ 11 11 11 11 11 11 11	10.632.832.329*Total Package Input Power at Zero Flow $^{c, d}$ 0.0kW10Isentropic Efficiency61.30%11 000 <		1'	7.7		75.5	2.	3.44
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 61.30 % 11 11 11 11 11 11 11 11	9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 61.30 %		1:	5.2		61.4	24	4.76
9* Total Package input Power at Zero Flow 0.0 RW 10 Isentropic Efficiency 61.30 %	9* Total Package input Power at Zero Flow 0.0 RW 10 Isentropic Efficiency 61.30 %					32.8	32	2.32
11 11	11 11	9*			er at Zero Flow ^{c, d}			
11 Note: Graph is only a visual representation of the data in Section 8 Note: 'T-Axis Scale, 10 to 35, + 5KW100acfm increments if necessary above 35	11 Note: Craph is only a visual representation of the data in Section 8 Note: V-Axis Scale, 0 to 25% over maximum capacity	10	Isentropic E	Efficiency		61.30		%
10.00 0.0 25.0 50.0 75.0 100.0 125.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 58W/100acfm increments if necessary above 35	10.00 0.0 25.0 50.0 75.0 100.0 125.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity	11	Specific Power	25.00 20.00				
0.0 25.0 50.0 75.0 100.0 125.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	0.0 25.0 50.0 75.0 100.0 125.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity							
Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity						100.0	125.0
	or models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrator				Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	ual representation of the data in - 5kW/100acfm increments if nece		
Consult CAGI website for a list of participants in the third party verification program: www.cagi.org		B	ACFM b. The op c. No Loa manufa d. Tolerau	is actual cubic fe erating pressure a d Power. In acco acturer may state s acce is specified in	et per minute at inlet cond t which the Capacity (Item ordance with ISO 1217, An 'not significant'' or "0" on ISO 1217, Annex E, as sh	tions. 8) and Electrical Consumptinex E, if measurement of no the test report. www.in table below:	ion (Item 8) were n load power equals	neasured for this data
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions.	 ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: 						NO LOAU /	
 NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. 	 ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. 				Volume Flow Rate	Specific Energy Consumption	Zero Flow Power	
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy	ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Zero Flow			-		1		
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy	ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate at specified conditions Volume Flow Rate Volume Fl		m ³ /min	ft ³ / min	%	%	%	
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Consumption Volume Flow Rate Volume Flow Rate	ACFM is actual cubic feet per minute at inlet conditions. 1 1 b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state 'not significant' or '0' on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy at specified conditions Volume Flow Rate main ft ³ /min % % % Below Below 17.6		Below				%	

М

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / \min}$	<u>ft³ / min</u>	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1		DEE DATA - FO	OR COMPRESSEI	<i>i</i> 1111	
	Manufacturer: FS-C	urtis			
	Model Number: NxV1	8-150		Date:	03/03/21
2	X Air-cooled	Water-cooled		Type:	Screw
				# of Stages:	1
3*	Full Load Operating Press	ure ^b	150	" of Bugos.	psig
4	Drive Motor Nominal Rati		25		hp
5	Drive Motor Nominal Effi		91.7		percent
6	Fan Motor Nominal Rating	g (if applicable)	1		hp
7	Fan Motor Nominal Effici	ency	82.5	C.	percent
	Input Power (kW)		Capacity (acfm) ^{a,d}	-	cific Power /100 acfm) ^d
	23.5		90.5	25.	
8*	21.3		79.7	26.	73
	18.6		68.4	27.	19
	16.1		57.6	27.	95
	10.5		32.4	32.	41
9*	Total Package Input Powe	r at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Efficiency		59.10		%
11	30.00 Specific Dower 25.00 Specific Dower 20.00 Specific Dower				
	15.00				
	15.00				
	10.00 0.0	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	50.0 Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity		100.0
	10.00 0.0	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, (Ormance Verification P	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve	Section 8 ssary above 35	
	els that are tested in the CAGI Perf CAGI website for a list of participar a. Measured at the discharge ACFM is actual cubic fee b. The operating pressure at c. No Load Power. In accor manufacturer may state " d. Tolerance is specified in 1	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P ats in the third party ver eterminal point of the con t per minute at inlet cond which the Capacity (Item dance with ISO 1217, Ar ot significant" or "0" on SO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. (8) and Electrical Consumpti nexe E, if measurement of no the test report.	Section 8 ssary above 35 rified by the third p www.cagi.org nee with ISO 1217, 4 on (Item 8) were me load power equals lo	arty administrato Annex E; asured for this data
NOTES:	els that are tested in the CAGI Perf CAGI website for a list of participar a. Measured at the discharge ACFM is actual cubic fee b. The operating pressure at c. No Load Power. In accor manufacturer may state " d. Tolerance is specified in I NOTE: The terms "powe Volume Flow Rate at specified conditions	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P the in the third party ver e terminal point of the cor t per minute at inlet cond which the Capacity (Item dance with ISO 1217, Ar not significant" or "0" on SO 1217, Annex E, as sh r" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. a 8) and Electrical Consumpti inex E, if measurement of no the test report. own in table below: nymous for purposes of this consumption	Section 8 ssary above 35 rified by the third p www.cagi.org nee with ISO 1217, <i>A</i> on (Item 8) were me load power equals lo locument.	arty administrato Annex E; asured for this data
NOTES:	els that are tested in the CAGI Perf CAGI website for a list of participar a. Measured at the discharge ACFM is actual cubic fee b. The operating pressure at c. No Load Power. In accor manufacturer may state " d. Tolerance is specified in I NOTE: The terms "powe Volume Flow Rate	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P the in the third party ver e terminal point of the cor t per minute at inlet cond which the Capacity (Item dance with ISO 1217, Ar not significant" or "0" on SO 1217, Annex E, as sh r" and "energy" are synon	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. a 8) and Electrical Consumpti inex E, if measurement of no the test report. own in table below: nymous for purposes of this c Specific Energy	Section 8 ssary above 35 rified by the third p www.cagi.org nee with ISO 1217, 4 ion (Item 8) were me load power equals lo locument.	arty administrato Annex E; asured for this data

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3} / \underline{min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 Model Number: NxV18-175 Date: 03/03/21 2 \overline{X} Air-cooled Water-cooled Type: Screw # of Stages: 1 3* Full Load Operating Pressure 175 psig 4 Drive Motor Nominal Rating 25 hp 5 Drive Motor Nominal Efficiency 91.7 percent 6 Fan Motor Nominal Efficiency 82.5 percent 7 Fan Motor Nominal Efficiency 82.5 percent 8* 23.5 82.9 28.35 8* 21.8 79.8 28.57 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow ^{e, d} 0.0 kW 10 Isentropic Efficiency 56.00 % 11 9 75.0 100.0 100.0 13.8 0.0 25.0 50.0 % 10 Isentropic Efficien	Model Number:NxV18-175Date:03/03/212 $\overline{\mathbf{X}}$ Air-cooledWater-cooledType:Screw# of Stages:11 \mathbb{P}^{10} \mathbb{P}^{10} 3*Full Load Operating Pressure91.7percent6Fan Motor Nominal Rating25 \mathbb{P}^{10} 7Fan Motor Nominal Rating (if applicable)1 \mathbb{P}^{10} 7Fan Motor Nominal Efficiency82.5percent8*23.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow \mathbb{P}^{10} 10Isentropic Efficiency56.00 \mathbb{P}_{0} 10Isentropic Efficiency56.00 \mathbb{P}_{0} 11Net: Graph is not scalar green statism of the data is factoria 8Note: Y-Attis Scale:10 5.5 \mathbb{P}_{0} \mathbb{P}_{0} 10Isentropic Efficiency56.00 \mathbb{P}_{0} 11Net: Graph is not scalar green statism of the data is increase at the intercents of the scalar green statism gradewice statism green statism gradewice s			DEL DATA - FO	OR COMPRESSE	5 AIN	
2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure 175 psig 9 4 Drive Motor Nominal Rating 25 hp 5 Drive Motor Nominal Rating (if applicable) 1 hp 6 Fan Motor Nominal Efficiency 82.5 percent 7 Fan Motor Nominal Efficiency 82.5 percent 8* 23.5 82.9 28.35 8* 22.8 79.8 28.57 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow 0.0 kW 10 Isentropic Efficiency 56.00 % 10 Isentropic Efficiency 50.0 50.0 100.0 1000 25.0 50.0 75.0 100.0 1000 25.0 50.0 75.0 100.0 1000 25.0 50.0 75.0 100.0 1000 25.7 SW/100.000 57.50 W/100.0000<	2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure 175 psig 9 4 Drive Motor Nominal Rating 25 hp 5 Drive Motor Nominal Efficiency 91.7 percent 6 Fan Motor Nominal Efficiency 82.5 percent 7 Fan Motor Nominal Efficiency 82.5 percent 8* 23.5 82.9 28.35 8* 22.8 79.8 28.57 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow 6.0 KW 10 Isentropic Efficiency 56.00 % 11 9% 70.0 KW Capacity (ACPM) Net: Crapk is only a visual representation of the data is Section 8 Net: Crapk is only a visual representation of the data is Section 8	1	Manufacturer: FS-C	Curtis			
11	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Model Number: NxV	18-175		Date:	03/03/21
3^* Full Load Operating Pressure175psig4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 23.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency56.00% 40.00 50.00 25.00 25.00 20.00 25.00 25.00 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.00 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.07 75.0 100 55.5 50.00 75.0 100 55.5 50.000 75.0 100 55.5 50.000 75.0 100 55.5	3^* Full Load Operating Pressure175psight4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power23.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency56.00% v_{000} $v_{$	2	X Air-cooled	Water-cooled		Type:	Screw
3^* Full Load Operating Pressure175psig4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power23.582.928.358*22.879.828.5719.867.219.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency56.00% $\frac{1000}{25.0}$ 10	3^* Full Load Operating Pressure175psig4Drive Motor Nominal Rating25hp5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8*1nput Power (kW)Capacity (acfm) ^{a,d} Specific Power23.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency56.00%11 v_{00}^{00} v_{00}^{00} v_{00}^{00} v_{00}^{00} $v_{25.00}^{00}$ $v_{50.00}^{00}$ $v_{50.00}^{00}$ v_{00} $v_{25.00}^{00}$ $v_{25.00}^{00}$ $v_{50.00}^{00}$ v_{00} v_{00}^{00} $v_{25.00}^{00}$ $v_{50.00}^{00}$ $v_{25.00}$ $v_{25.00}^{00}$ $v_{25.00}^{00}$ $v_{25.00}^{00}$ $v_{25.00}^{00}$ $v_{25.00}^{00}$ $v_{25.00}^{00}$ <td< td=""><td></td><td></td><td></td><td></td><td># of Stages:</td><td>1</td></td<>					# of Stages:	1
5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent7Input Power (kW)Capacity (acfm) ^{a,d} Specific Power8*23.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow c, d 0.0kW10Isentropic Efficiency56.00%Isentropic Efficiency1	5Drive Motor Nominal Efficiency91.7percent6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent7Fan Motor Nominal Efficiency82.5percent8Input Power (kW)Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 823.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow56.00%10Isentropic Efficiency56.00%11 $\int_{0.00}^{0.00} \frac{10.00}{25.0} \frac{25.0}{50.0} \frac{50.0}{75.0} \frac{100.0}{10.00} \frac{10.00}{25.0} \frac{10.00}{55.00} \frac{10.00}{75.0} \frac{100.0}{10.00} \frac{10.00}{25.0} \frac{10.00}{55.00} \frac{10.00}{75.0} \frac{100.0}{10.00} \frac{10.00}{25.0} \frac{10.00}{55.0} \frac{10.00}{75.0} \frac{100.0}{10.00} \frac{10.00}{25.0} \frac{10.00}{55.0} \frac{10.00}{75.0} \frac{10.00}{10.00} \frac{10.00}{55.0} \frac{10.00}{55.0} \frac{10.00}{75.0} \frac{10.00}{10.00} \frac{10.00}{55.0} \frac{10.00}{55.0} \frac{10.00}{75.0} \frac{10.00}{7$	3*	Full Load Operating Pres	sure	175		psig ^b
6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percent7Input Power (kW)Capacity (acfm) ^{a,d} Specific Power8*23.582.928.358*22.879.828.5719.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency56.00%Imput Power at Zero Flow ^{c, d} 11Imput Power at Zero Flow ^{c, d} 0.011Imput Power at Zero Flow ^{c, d} 0.011Imput Power at Zero Flow ^{c, d} 0.012Imput Power at Zero Flow ^{c, d} 0.013.8Imput Power at Zero Flow ^{c, d} 0.010Isentropic Efficiency56.0011Imput Power at Zero Flow ^{c, d} 0.012Imput Power at Zero Flow ^{c, d} 0.013.8Imput Power at Zero Flow ^{c, d} 0.010Isentropic Efficiency56.0010.00Imput Power 250100.0010.00Imput Power 250100.0013.8Imput Power 250100.0014.1Imput Power 250100.0015.00Imput Power 250100.0010.00Imput Power 250100.0011.1Imput Power 250100.0012.1Imput Power 250100.0013.2Imput Power 250100.00 <td< td=""><td>6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percentInput Power (kW)Capacity $(acfm)^{n,d}$Specific Power23.582.928.358*22.879.823.582.928.3519.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency56.00%Imput Specific Power at Zero Flow c, d0$v_{0,0}$</td><td>4</td><td>Drive Motor Nominal Ra</td><td>ting</td><td>25</td><td></td><td>hp</td></td<>	6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5percentInput Power (kW)Capacity $(acfm)^{n,d}$ Specific Power23.582.928.358*22.879.823.582.928.3519.867.229.4617.254.431.6213.840.334.249*Total Package Input Power at Zero Flow c, d 0.0kW10Isentropic Efficiency56.00%Imput Specific Power at Zero Flow c, d 0 $v_{0,0}$	4	Drive Motor Nominal Ra	ting	25		hp
7 Fan Motor Nominal Efficiency 82.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 23.5 82.9 28.35 8* 22.8 79.8 28.57 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 56.00 % 11 $\sqrt[40.00]{9000}^{25.00}_{25$	7 Fan Motor Nominal Efficiency 82.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 23.5 82.9 28.35 8* 22.8 79.8 28.57 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 56.00 % 11 1000 25.00 75.0 100.0 11 1000 25.00 75.0 100.0 11 1000 25.00 75.0 100.0 11 1000 25.00 75.0 100.0 11 1000 25.00 75.0 100.0 11 1000 25.00 75.0 100.0 11 1000 25.00 75.0 100.0 1000 25.00 75.0 100.0 100.0 1000 25.00 75.0 100.0 100.0 1000	5	Drive Motor Nominal Eff	ficiency	91.7		percent
$11 \qquad $	Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 23.5 82.9 28.35 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 56.00 % 11 $\sqrt[600]{9000}^{25.00}_{0.00}_{0.00}_{0.00}_{0.00}_{25.00}_{25.00}_{0.00}_{0.00}_{0.00}_{25.00}_{25.00}_{0.00}_{0.00}_{15.00}_{15.00}_{0.00}_{0.00}_{0.00}_{25.0}_{25.00}_{25.00}_{0.00}_{0.00}_{15.00}_{25.00}_{0.00}_{0.00}_{25.0}_{75.0}_{75.0}_{100.0}_{100.0}_{10.00}_{0.00}_{0.00}_{25.0}_{25.00}_{25.00}_{0.00}_{0.00}_{25.0}_{25.00}_{25.00}_{0.00}_{0.00}_{25.0}_{25.00}_{25.00}_{0.00}_{0.00}_{25.0}_{25.00}_{25.00}_{0.00}_{0.00}_{25.0}_{25.0}_{25.00}_{0.00}_{25.0}_{75.0}_{100.0}_{10.00}_{0.00}_{0.00}_{25.0}_{25.0}_{25.00}_{0.00}_{0.00}_{25.0}_{25.0}_{25.00}_{0.00}_{0.00}_{25.0}_{25.0}_{25.00}_{0.00}_{0.00}_{25.0}_{25.0}_{25.0}_{0.00}_{0.00}_{25.0}_{25.0}_{25.0}_{0.00}_{0.00}_{25.0}_{25.0}_{25.0}_{0.00}_{25.0}_{25.0}_{25.0}_{0.00}_{0.00}_{25.0}_{25$	6	Fan Motor Nominal Ratin	ng (if applicable)	1		hp
$11 \qquad $	Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 23.5 82.9 28.35 8* 22.8 79.8 28.57 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 56.00 % 10 isentropic Efficiency 50.00 % 10 isentropic Efficiency 10.00 25.00 50.00 75.0 100.0 10.00 25.00 50.00 75.0 100.0 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10	7	Fan Motor Nominal Effic	iency		Sr	
$11 \qquad 11 \qquad \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$11 \begin{bmatrix} 23.5 & 82.9 & 28.35 \\ 22.8 & 79.8 & 28.57 \\ 19.8 & 67.2 & 29.46 \\ 17.2 & 54.4 & 31.62 \\ 13.8 & 40.3 & 34.24 \\ 9^* & Total Package Input Power at Zero Flow c, d & 0.0 & kW \\ 10 & Isentropic Efficiency & 56.00 & \% \\ \end{bmatrix}$		Input Power (kW)		Capacity (acfm) ^{a,d}	-	
11 19.8 67.2 29.46 17.2 54.4 31.62 13.8 40.3 34.24 $9*$ 10 $1sentropic Efficiency$ 56.00 $9%$ 10 $1sentropic 2efficiency$ 56.00 $9%$ 10 $1sentropic 2efficiency$ 56.00 $9%$ 10 $1sentropic 2efficiency$ 56.00 $9%$ 10 55.00 10.0 15.00 10.00 $Capacity (ACFN)$ Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 0.05, + 58W(100 defin increments if necessary above 35	$11 \qquad \begin{array}{ c c c c c c c } \hline 19.8 & 67.2 & 29.46 \\ \hline 17.2 & 54.4 & 31.62 \\ \hline 13.8 & 40.3 & 34.24 \\ \hline 9^* & Total Package Input Power at Zero Flow c, d & 0.0 & kW \\ \hline 10 & Isentropic Efficiency & 56.00 & \% \\ \hline 10 & Isentropic Efficiency & 56.00 & 0 \\ \hline & & & & & & & & & & & & & & & & & &$		23.5				
11 11 11 11 11 11 11 11	11 11 11 11 11 17.2 13.8 10 15.00 15.00 10.0 15.00 10.0 15.00 10.0 15.00 10.0 15.00 10.0 15.00 10.0 15.00 10.0 15.00 10.0 15.00 10.0 10	8*	22.8		79.8	28	8.57
13.840.334.249*Total Package Input Power at Zero Flow $^{c, d}$ 0.0kW10Isentropic Efficiency56.00%11111111Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, * SkW/100acfm increments if necessary above 35	13.8 40.3 34.24 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 56.00 %		19.8		67.2	29	9.46
9* Total Package Input Power at Zero Flow $^{c, d}$ 0.0 kW 10 Isentropic Efficiency 56.00 % 11 40.00 35.00 30.00 30.00 30.00 30.00 25.00 25.00 25.00 25.00 25.00 25.00 110 15.00 25.00 <	9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 56.00 %		17.2		54.4	31	1.62
9^* Total Package Input Power at Zero Flow 0.0 kW 10 Isentropic Efficiency 56.00 %	9* Total Package Input Power at Zero Flow 0.0 kW 10 Isentropic Efficiency 56.00 % 11				40.3	34	4.24
10 Interview 10 10 11 40.00 35.00 30.00 35.00 30.00 25.00 25.00 20.00 15.00 15.00 15.00 15.00 15.00 15.00 10.00 25.0 50.0 75.0 100.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100.acfm increments if necessary above 35	10 Joint ope Entropy 10 11 40.00 35.00 30.00 30.00 30.00 25.00 11 25.00 10.00 25.00 11 15.00 11 15.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 15.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00<	-		er at Zero Flow ^{c, d}			
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1	11 Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution S	10	Isentropic Efficiency		56.00		%
0.0 25.0 50.0 75.0 100.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	0.0 25.0 50.0 75.0 100.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity	11	25.00 VEJU 25.00 VEJU 25.00 VEJU 20.00 VEJU				
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity			25.0	50.0	75.0	100.0
	For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrato			Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece	Section 8	
Consult CAGI website for a list of participants in the third party verification program: www.cagi.org					=	-	party administrate
Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document.	 ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state 'not significant' or '0'' on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: 	Consult C NOTES:	AGI website for a list of participa a. Measured at the dischar ACFM is actual cubic fe b. The operating pressure a c. No Load Power. In acco- manufacturer may state d. Tolerance is specified in	ants in the third party ver ge terminal point of the cor tet per minute at inlet cond t which the Capacity (Item ordance with ISO 1217, Ar "not significant" or "0" on ISO 1217, Annex E, as sh	ification program: npressor package in accordan itions. 8) and Electrical Consumpt: nex E, if measurement of no the test report. own in table below:	www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals	Annex E; neasured for this data
 NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: 	ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. NO Load 7 Volume Flow Rate Specific Energy Zero Flow	Consult C NOTES:	AGI website for a list of participa a. Measured at the dischary ACFM is actual cubic fe b. The operating pressure a c. No Load Power. In acco manufacturer may state d. Tolerance is specified in NOTE: The terms "pow Volume Flow Rate	ants in the third party ver ge terminal point of the con tet per minute at inlet cond it which the Capacity (Item ordance with ISO 1217, Ar "not significant" or "0" on ISO 1217, Annex E, as sh rer" and "energy" are synor	ification program: mpressor package in accordan- itions. (8) and Electrical Consumpti- nex E, if measurement of no- the test report. own in table below: mymous for purposes of this of Specific Energy	www.cagi.org nce with ISO 1217, ion (Item 8) were n load power equals document.	Annex E; neasured for this data
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Zero Flow	ACFM is actual cubic feet per minute at inlet conditions. Image: Construct of the construction of th	Consult C NOTES:	AGI website for a list of participa a. Measured at the dischary ACFM is actual cubic fe b. The operating pressure a c. No Load Power. In acco manufacturer may state ' d. Tolerance is specified in NOTE: The terms "pow Volume Flow Rate at specified conditions <u>m³ / min</u> <u>ft³ / min</u>	ants in the third party ver ge terminal point of the con et per minute at inlet cond to which the Capacity (Item ordance with ISO 1217, Ar "not significant" or "0" on ISO 1217, Annex E, as sh rer" and "energy" are synor Volume Flow Rate	ification program: mpressor package in accordan- itions. (8) and Electrical Consumpti- nex E, if measurement of no- the test report. own in table below: mymous for purposes of this of Specific Energy Consumption	www.cagi.org nce with ISO 1217, ion (Item 8) were n load power equals document. Zero Flow Power	Annex E; neasured for this data

		ime Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1			MO	DDEL DATA - F	OR COMPRESSE	D AIR	
1	Manufa	acturer:	FS-C	Curtis			
	Model 1	Number	:: NxV	22-100		Date:	03/03/21
2	X	Air-co	oled	Water-cooled		Туре:	Screw
						# of Stages:	1
3*	Full Loa	ad Oper	rating Pres	sure	100	π of stages.	psig ^b
4			ominal Ra		30		hp
5			ominal Ef		91.7		percent
6	Fan Mo	otor Noi	ninal Ratii	ng (if applicable)	1		hp
7	Fan Mo	otor Noi	ninal Effic	ciency	82.5		percent
	Inpu	t Powe	r (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
		27.0			128.6		21.00
8*		22.8			111.1		20.52
		18.9			92.5		20.43
		14.9			73.3		20.33
		7.1		c, d	33.7		21.07
9*		-	-	er at Zero Flow ^{C, d}	0.0		kW
10	Isentrop	pic Effi	ciency		64.20		%
11		Specific Power (kW/100 ACFM)	30.00 25.00 20.00 15.00 10.00 0.0	Note: Graph is only a v	0 75.0 1 Capacity (ACFM) isual representation of the data in + 5 KW/100acfm increments if nece		.0 150.0
	CAGI website a. M	e for a lis leasured a CFM is a	t of participa at the dischar ctual cubic fe ing pressure a	rformance Verification I ants in the third party ve ge terminal point of the ce set per minute at inlet con at which the Capacity (Iter	ompressor package in accorda	www.cagi.org nce with ISO 121 ion (Item 8) were	7, Annex E; e measured for this data s
ROTES:	c. N m d. Te	anufactur olerance i	er may state s specified ir	"not significant" or "0" or ISO 1217, Annex E, as s	the test report. hown in table below:		10 1000 unu 170,
GI	c. N m d. Te	anufactur olerance i	er may state s specified ir	"not significant" or "0" or ISO 1217, Annex E, as s	1 the test report.	document.	
GI & Gas Institute	c. N m d. Te N Vol at spe	anufactur olerance i OTE: Th ume Flov ccified cor	er may state s specified in e terms "pow v Rate nditions	"not significant" or "0" or ISO 1217, Annex E, as s ver" and "energy" are sync Volume Flow Rate	a the test report. hown in table below: nymous for purposes of this of Specific Energy Consumption	Zero Flow Power	
GI & Gas Institute	c. N m d. Te N Vol	anufactur olerance i OTE: Th ume Flow ecified con <u>ft³</u>	er may state s specified ir e terms "pow v Rate	"not significant" or "0" or I ISO 1217, Annex E, as s zer" and "energy" are sync	a the test report. hown in table below: onymous for purposes of this of Specific Energy	Zero Flow	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 X Air-cooled Water-cooled Type: $03/03$ 2 X Air-cooled Water-cooled Type: $Scrathington Strateges:$ 1 3* Full Load Operating Pressure ^b 125 psig 4 Drive Motor Nominal Rating 30 hpp 5 Drive Motor Nominal Efficiency 91.7 percent 6 Fan Motor Nominal Efficiency 82.5 percent 7 Fan Motor Nominal Efficiency 82.5 percent 8* 23.0 102.8 22.37 19.3 86.3 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 KV 10 Isentropic Efficiency 66.00 $\%$ $\frac{40.00}{35.00}$ $\frac{40.00}{35.00}$ $\frac{40.00}{35.00}$ $\frac{40.00}{35.00}$	2 Mod 2 X 3* Full
2 \mathbf{X} Air-cooledWater-cooledType:Screen with the second se	2 X 3* Full
Image: Strategy of Stages: 1 3* Full Load Operating Pressure 125 4 Drive Motor Nominal Rating 30 5 Drive Motor Nominal Efficiency 91.7 6 Fan Motor Nominal Rating (if applicable) 1 7 Fan Motor Nominal Efficiency 82.5 8* Input Power (kW) Capacity (acfm) ^{a,d} 31.4 117.9 26.63 8* 23.0 102.8 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 %W 10 Isentropic Efficiency 66.00 %	3* Full
3^* Full Load Operating Pressure125psig4Drive Motor Nominal Rating30hp5Drive Motor Nominal Efficiency91.7perce6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5perce7Fan Motor Nominal Efficiency82.5perce8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power31.4117.926.638*23.0102.822.3719.386.322.3614.968.621.727.932.724.169*Total Package Input Power at Zero Flow ^{c, d} 0.0kV10Isentropic Efficiency66.00 $\%$	
3^* Full Load Operating Pressureb125psig4Drive Motor Nominal Rating30hp5Drive Motor Nominal Efficiency91.7perce6Fan Motor Nominal Rating (if applicable)1hp7Fan Motor Nominal Efficiency82.5perce7Fan Motor Nominal Efficiency82.5perce8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power31.4117.926.638*23.0102.822.3719.386.322.3614.968.621.727.932.724.169*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency66.00 $\%$	
5 Drive Motor Nominal Efficiency 91.7 percent 6 Fan Motor Nominal Rating (if applicable) 1 hpp 7 Fan Motor Nominal Efficiency 82.5 percent 7 Fan Motor Nominal Efficiency 82.5 percent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 8* 23.0 102.8 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 66.00 %	4 Driv
6 Fan Motor Nominal Rating (if applicable) 1 hp 7 Fan Motor Nominal Efficiency 82.5 perce 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 31.4 117.9 26.63 8* 23.0 102.8 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 66.00 %	
7 Fan Motor Nominal Efficiency 82.5 percent of the second	5 Driv
Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) 31.4 117.9 26.63 8* 23.0 102.8 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 66.00 %	6 Fan
Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) 31.4 117.9 26.63 8* 23.0 102.8 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 66.00 %	7 Fan
31.4 117.9 26.63 8* 23.0 102.8 22.37 19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 66.00 %	I
19.3 86.3 22.36 14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 66.00 %	
14.9 68.6 21.72 7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 66.00 %	8*
7.9 32.7 24.16 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 66.00 %	
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kV 10 Isentropic Efficiency 66.00 %	
9* Total Package Input Power at Zero Flow 0.0 kv 10 Isentropic Efficiency 66.00 %	0.4
35.00	
11 30.00 25.00 20.00 15.00	11
10.00 25.0 50.0 75.0 100.0 125.0	
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity	

М

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m}^3 / \underline{min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

	<u>т </u>			OR COMPRESSE			
1	Manufacturer:	FS-C	urtis				
	Model Number	:: NxV2	2-150		Date:	03/03/21	
2	X Air-co	oled	Water-cooled		Type:	Screw	
					# of Stages:	1	
3*	Full Load Oper	rating Press	ure	150	# 01 Stages.	b psig	
4	Drive Motor N	-		30		hp	
5	Drive Motor N		0	91.7		percent	
6			g (if applicable)	1		hp	
7	Fan Motor Nor			82.5		percent	
	Input Power	r (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d	
	29.1			112.3		25.91	
8*	25.1			97.2		25.82	
	21.4			81.5		26.26	
	17.9			67.3		26.60	
	10.4		c, d	32.0		32.50	
9*	Total Package	-	er at Zero Flow ^{C, u}	ow 0.0 k			
10	Isentropic Effic	ciency		60.90		%	
11	Specific Power (KW/100 ACFM)	25.00					
		10.00		50.0 75.0 Capacity (ACFM)	100.0	125.0	
				ual representation of the data in			
				+ 5kW/100acfm increments if nece) to 25% over maximum capacity			
Consult C NOTES:	CAGI website for a lis a. Measured a ACFM is a b. The operati c. No Load Po manufactur d. Tolerance i	ne CAGI Perf t of participan at the discharge ctual cubic fee ing pressure at ower. In accor er may state " s specified in	X-Axis Scale, (ormance Verification P nts in the third party ver e terminal point of the cor et per minute at inlet cond which the Capacity (Item rdance with ISO 1217, An not significant" or "0" on ISO 1217, Annex E, as sh) to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. (8) and Electrical Consumpt: nex E, if measurement of no the test report.	rified by the thi www.cagi.org nee with ISO 121 ion (Item 8) were load power equa	7, Annex E; e measured for this data	
Consult C NOTES:	CAGI website for a lis a. Measured a ACFM is a b. The operati- c. No Load Po- manufactur d. Tolerance i NOTE: Th Volume Flow at specified co	ne CAGI Perf t of participan at the discharge ctual cubic fee ing pressure at ower. In accor- ower may state " s specified in the terms "power V Rate nditions	X-Axis Scale, (Formance Verification P nts in the third party ver e terminal point of the cor t per minute at inlet cond which the Capacity (Item rdance with ISO 1217, An not significant" or "0" on ISO 1217, Annex E, as sh rr" and "energy" are synor	0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itons. (8) and Electrical Consumpti nex E, if measurement of no the test report. own in table below: mymous for purposes of this of Specific Energy Consumption	rified by the thi <u>www.cagi.org</u> ince with ISO 121 ion (Item 8) were load power equa locument. <u>No Load</u> Zero Flow <u>Power</u>	7, Annex E; e measured for this data	
Consult C	CAGI website for a lis a. Measured a ACFM is a b. The operati- c. No Load Po- manufactur d. Tolerance i NOTE: Th Volume Flow at specified cor <u>m³ / min</u> <u>Relow</u>	he CAGI Perf t of participan at the discharge ctual cubic fee ing pressure at ower. In accor- er may state " s specified in te terms "power 7 Rate	X-Axis Scale, (Formance Verification P nts in the third party ver e terminal point of the cor t per minute at inlet cond which the Capacity (Item rdance with ISO 1217, An not significant" or "0" on ISO 1217, Annex E, as sh rr" and "energy" are synor	0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. (8) and Electrical Consumpti nex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy	rified by the thi <u>www.cagi.org</u> ince with ISO 121 ion (Item 8) were load power equa- load power equa- locument.	7, Annex E; e measured for this data	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		MO	DEL DATA - FO	OR COMPRESSEI) AIR	
1	Manufacture	: FS-Cu	ırtis			
	Model Numb	er: NxV2	2-175		Date:	03/03/21
2	X Air-o	cooled	Water-cooled		Туре:	Screw
					# of Stages:	1
3*	Full Load Op	erating Press	ure	175		psig ^b
4	Drive Motor	Nominal Rati	ng	30		hp
5	Drive Motor			91.7		percent
6		-	g (if applicable)	1		hp
7	Fan Motor No		ency	82.5	S	percent pecific Power
	Input Pow	er (kW)		Capacity (acfm) ^{a,d}		$(W/100 \text{ acfm})^d$
	29.	7		105.4		28.18
8*	26.	1		93.3	2	27.97
	22.	8		79.8	2	28.57
	19.			67.2	2	29.46
0.*	13.		c, d	40.3	3	34.24
9* 10	Total Packag Isentropic Eff	-	r at Zero Flow ^{C, d}	0.0 60.10		<u>kW</u> %
11	Specific Power (kW/100 ACFM)	35.00				
	S 3	20.00	25.0	50.0 75.0	100.0	125.0
		15.00 10.00 0.0	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 0	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity	Section 8 ssary above 35	
	els that are tested in AGI website for a l a. Measured ACFM is b. The oper c. No Load manufact d. Tolerance	15.00 10.00 10.00 10.00 N The CAGI Performs ist of participant at the discharge actual cubic feet atting pressure at Power. In accord urer may state "n e is specified in I	Note: Graph is only a visore: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, Transce Verification P ts in the third party ver terminal point of the cont per minute at inlet cond which the Capacity (Item dance with ISO 1217, Ar tot significant" or "0" on SO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. 1 8) and Electrical Consumpti nexe E, if measurement of no the test report.	Section 8 ssary above 35 rified by the thir www.cagi.org nee with ISO 121' non (Item 8) were load power equal locument.	d party administrato 7, Annex E; measured for this data
Consult C NOTES:	els that are tested in CAGI website for a l a. Measured ACFM is b. The oper c. No Load manufact d. Tolerance NOTE: 7	15.00 10.00 0.0 N The CAGI Perfit ist of participan I at the discharge actual cubic feet ating pressure at the accor- urer may state "m is specified in I The terms "power sw Rate	Note: Graph is only a visore: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, Transce Verification P ts in the third party ver terminal point of the cont per minute at inlet cond which the Capacity (Item dance with ISO 1217, Ar tot significant" or "0" on SO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. 8) and Electrical Consumpti mex E, if measurement of no the test report. own in table below:	Section 8 ssary above 35 rified by the thir www.cagi.org nee with ISO 121' ion (Item 8) were load power equal	d party administrato 7, Annex E; measured for this data

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3} / \underline{min}$	<u>ft³ / min</u>	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	Manufacturer	: FS-C	Curtis			
	Model Numbe	er: NxV	30-100		Date:	03/03/2
2	X Air-c	ooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	erating Pres	sure	100	" of Buges.	psig
4	Drive Motor N	-		40		hp
5	Drive Motor N			93.0		percent
6	Fan Motor No	ominal Ratii	ng (if applicable)	1.5		hp
7	Fan Motor No	ominal Effic	ciency	87.5		percent
	Input Powe	er (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
	36.7	7		183.0		20.05
8*	30.4	1		162.5		18.71
	26.7	7		142.7		18.71
	23.2	2		99.8		23.25
	14.1		, 7 El c, d	51.8		27.22
9* 10	Total Package Isentropic Eff		er at Zero Flow ^{c, d}	0.0 68.90		<u>kW</u>
11	Specific Power (kW//00 ACFM)	30.00 25.00 20.00 20.00				
		15.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	75.0 100.0 125.0 Capacity (ACFM) ual representation of the data i 5 kW/100acfm increments if nex 0 c 25% over maximum capacity	n Section 8	175.0 200.0
			Note: Y-Axis Scale, 10 to 35,	5kW/100acfm increments if nec		
	AGI website for a li a. Measured ACFM is b. The opera c. No Load I manufact d. Tolerance NOTE: T	ist of participa at the dischar, actual cubic fe actual cubic fe titing pressure a Power. In acco urer may state e is specified in The terms "pow	rformance Verification P. ants in the third party ver ge terminal point of the cor et per minute at inlet cond at which the Capacity (Item ordance with ISO 1217, An "not significant" or "0" on a ISO 1217, Annex E, as sh	rogram, these items are v ification program: npressor package in accorda tions. 8) and Electrical Consump nex E, if measurement of n the test report.	www.cagi.org ance with ISO 12 tion (Item 8) were o load power equ	17, Annex E; e measured for this da
onsult C NOTES:	AGI website for a li a. Measured ACFM is b. The opera c. No Load 1 manufactu d. Tolerance	ist of participa at the dischar actual cubic fe ting pressure a Power. In accu urer may state e is specified in The terms "pow we Rate onditions	rformance Verification P. ants in the third party ver ge terminal point of the cor et per minute at inlet cond at which the Capacity (Item ordance with ISO 1217, An "not significant" or "0" on a ISO 1217, Annex E, as sh	rogram, these items are v ification program: npressor package in accord tions. 8) and Electrical Consump nex E, if measurement of n the test report. own in table below: tymous for purposes of this	www.cagi.org ance with ISO 12 tion (Item 8) were o load power equ document.	17, Annex E; e measured for this day

M

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3} / \underline{min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	Manufacturer:	FS-Cu	urtis				
-							
	Model Number:	NxV3	0-125		Date:	03/03/21	
2	X Air-cool	ed 🔄	Water-cooled		Type:	Screw	
					# of Stages:	1	
3*	Full Load Operat	ing Pressu	ıre ^b	125		psig ^b	
4	Drive Motor Non	ninal Rati	ng	40		hp	
5	Drive Motor Non	ninal Effi	ciency	93.0		percent	
6	Fan Motor Nomin	btor Nominal Rating (if applicable) 1.5 hp					
7	Fan Motor Nomin	otor Nominal Efficiency 87.5 percen				percent	
	Input Power (H	cW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d	
	38.2			168.7		22.64	
8*	29.8			134.3		22.19	
	23.5			115.0		20.43	
	21.5			95.8		22.44	
	16.5			51.0		32.35	
9*	Total Package Inj	put Power	r at Zero Flow ^{c, d}	0.0		kW	
10	Isentropic Efficie	opic Efficiency 63.00 %					
11	ower ICFM	5.00					
11		5.00					
	10	0.00					
		0.0	25.0 50.0	75.0 100.0 125.0 Capacity (ACFM)	150.0	175.0 200.0	
		Ν	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, 4	ual representation of the data in - 5kW/100acfm increments if nece to 25% over maximum capacity			
	els that are tested in the (-	-	rd party administrator	
nsult C	CAGI website for a list of	f participan	ts in the third party ver	ification program:	www.cagi.org		
nsult C	AGI website for a list of a. Measured at th ACFM is actu b. The operating	f participan ne discharge al cubic feet pressure at	ts in the third party ver terminal point of the con per minute at inlet condi which the Capacity (Item	ification program:	www.cagi.org	17, Annex E; e measured for this data	
nsult C OTES:	AGI website for a list of a. Measured at th ACFM is actu- b. The operating c. No Load Poww manufacturer d. Tolerance is sp	f participan ne discharge al cubic feet pressure at er. In accorr may state "n pecified in I!	ts in the third party ver terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on to SO 1217, Annex E, as sho	ification program: npressor package in accordantions. 8) and Electrical Consumptinex E, if measurement of no the test report.	www.cagi.org	17, Annex E; e measured for this data	
	AGI website for a list of a. Measured at th ACFM is actu- b. The operating c. No Load Poww manufacturer d. Tolerance is sp	f participan ne discharge al cubic feet pressure at er. In accorr may state "n pecified in I!	ts in the third party ver terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on to SO 1217, Annex E, as sho	ification program: npressor package in accordan tions. 8) and Electrical Consumpt: nex E, if measurement of no the test report. own in table below:	www.cagi.org	17, Annex E; e measured for this data	
nsult C OTES:	AGI website for a list of a. Measured at th ACFM is actu- b. The operating c. No Load Poww manufacturer d. Tolerance is sp	f participan ne discharge al cubic feet pressure at " may state "n pecified in I! erms "power ate	ts in the third party ver terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on to SO 1217, Annex E, as sho	ification program: npressor package in accordan tions. 8) and Electrical Consumpt: nex E, if measurement of no the test report. own in table below:	www.cagi.org nce with ISO 121 ion (Item 8) were load power equa	17, Annex E; e measured for this data	

M

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Т 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

2 X Air-cooled Water-cooled # of Stages: 1 3* Full Load Operating Pressure 9 150 psig 4 Drive Motor Nominal Rating 40 hp 5 Drive Motor Nominal Rating (if applicable) 1.5 hp 7 Fan Motor Nominal Efficiency 87.5 percent 8 30.4 123.2 24.68 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 KW 10 Isentropic Efficiency 65.20 % 11 11 10 Sector State			MO	DEL DATA - FO	OR COMPRESSE	J AIK		
2 X Air-cooled Water-cooled Type: Server # of Stages: 1 3* Full Load Operating Pressure 150 psight 4 Drive Motor Nominal Rating 40 hp 5 Drive Motor Nominal Rating 40 hp 6 Fan Motor Nominal Efficiency 93.0 percer 6 Fan Motor Nominal Efficiency 87.5 percer 10 Input Power (kW) Capacity (acfm) ^{ad} (kW/100 acfm) ^d 8* 30.4 123.2 24.68 3 7.6 152.8 24.61 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 65.20 % % 11 Mgggggggggggggggggggggggggggggggggggg	1	Manufacturer:	FS-Cu	ırtis				
# of Stages: 1 3* Full Load Operating Pressure b 150 prig b 4 Drive Motor Nominal Rating 40 hp 5 Drive Motor Nominal Rating (if applicable) 1.5 hp 7 Fan Motor Nominal Efficiency 87.5 percert 1 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 30.4 152.8 24.61 8* 30.4 152.2 24.68 26.7 106.7 25.02 23.0 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 65.20 % 11 $\sqrt[40.00]{(0.0)}$		Model Number	:: NxV3	0-150		Date:	03/03/21	
3* Full Load Operating Pressure ^b 150 psig ^b 4 Drive Motor Nominal Rating 40 hp 5 Drive Motor Nominal Rating (if applicable) 1.5 hp 7 Fan Motor Nominal Efficiency 87.5 percert 1 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{6, d} 0.0 kW 10 Isentropic Efficiency 65.20 % 11 90 25.09 25.09 25.09 12.0 10.0 15.0 15.0 15.0 13.0 15.0 10.0 15.0 15.0 15.0 14.4 9.7 28.97 9* 10.1 Isentropic Efficiency 65.20 % 10 Isentropic Capakis and y a Visal representation of the data is Section 8 Note YA.48 Sale, 10.8 1.5 X.45 Wittodefin incremator 8 Note YA.48 Sale, 10.8 1.5 X.45 Wi	2	X Air-co	X Air-cooled Water-cooled Type:					
3* Full Load Operating Pressure ^b 150 psig ^b 4 Drive Motor Nominal Rating 40 hp 5 Drive Motor Nominal Rating (if applicable) 1.5 hp 7 Fan Motor Nominal Efficiency 87.5 percert 1 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{6, d} 0.0 kW 10 Isentropic Efficiency 65.20 % 11 90 25.09 25.09 25.09 12.0 10.0 15.0 15.0 15.0 13.0 15.0 10.0 15.0 15.0 15.0 14.4 9.7 28.97 9* 10.1 Isentropic Efficiency 65.20 % 10 Isentropic Capakis and y a Visal representation of the data is Section 8 Note YA.48 Sale, 10.8 1.5 X.45 Wittodefin incremator 8 Note YA.48 Sale, 10.8 1.5 X.45 Wi						# of Stages:	1	
5 Drive Motor Nominal Efficiency 93.0 percer 6 Fan Motor Nominal Rating (if applicable) 1.5 hp 7 Fan Motor Nominal Efficiency 87.5 percert Input Power (kW) Capacity (acfm) ^{3.dl} (kW/100 acfm) ^{dl} 8* 30.4 123.2 24.61 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{C, dl} 0.0 kW 10 Isentropic Efficiency 65.20 % 10 Isentropic Efficiency 65.20 % 11	3*	Full Load Oper	ating Pressu	ıre ^b		0	psig	
6 Fan Motor Nominal Rating (if applicable) 1.5 hp 7 Fan Motor Nominal Efficiency 87.5 percer 1 Input Power (kW) Capacity (acfm) ^{3,dd} Specific Power 37.6 152.8 24.61 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 65.20 % 10 Isentropic Efficiency 65.20 % 11 $\sqrt[40,00]{9000}{900}$	4	Drive Motor N	ominal Rati	ng	40		hp	
7 Fan Motor Nominal Efficiency 87.5 percent Specific Power (kW) Input Power (kW) Capacity (acfm) ^{d.d} Specific Power (kW/100 acfm) ^{d.d} Specific Power (kW/100 acfm) ^{d.d} 8* 30.4 1132.2 24.61 8* 30.4 123.2 24.61 10 23.2 91.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{C, d.d} 0.0 kW 10 Isentropic Efficiency 65.20 % 10 Isentropic Efficiency 65.20 100 1250 150 11 9* Total Package Input Power at Zero Flow ^{C, d.d} 0.0 kW 10 11 1000 25.9 500 75.0 1000 1250 150.0 175.0 11 11 1000 25.9 500 75.0 1000 1250 150.0 175.0 12 1000 25.9 500 75.0 1000 125.0 150.0 175.0 100 1000 25	5				93.0		percent	
Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 30.4 152.8 24.61 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{c,d} 0.0 kW 10 Isentropic Efficiency 65.20 % 10 Isentropic Efficiency 65.20 % 11 $\sqrt[40.00]_{0.0}$ $\sqrt[50.0]_{10.0}$ $\sqrt[10.0]_{125.0}$ $\sqrt[10.0]_{15.0}$ 12 $\sqrt[40.00]_{0.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ 10 Isentropic Efficiency $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ 10.0 $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ 11 $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ 11 $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ $\sqrt[10.0]_{15.0}$ 12.00	-						hp	
Input Power (kW) Capacity (acfm) ^{d,d} (kW/100 acfm) ^d 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 65.20 % 11 $\sqrt[40.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ 11 $\sqrt[40.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ 11 $\sqrt[40.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ 12 $\sqrt[40.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ 13.00 $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ 14.1 $\sqrt[40.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{0.00}$ $\sqrt[50.00]_{$	7			ency		S	percent pecific Power	
8* 37.6 152.8 24.61 8* 30.4 123.2 24.68 26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^{6, d} 0.0 KW 10 Isentropic Efficiency 65.20 % 10 Isentropic Efficiency 65.20 % 10 1000		Input Power	: (kW)		Capacity (acfm) ^{a,d}		-	
26.7 106.7 25.02 23.2 91.7 25.30 14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ⁶ ; ^d 0.0 kW 10 Isentropic Efficiency 65.20 % 11 $\sqrt[40,00]{9.00}$ $\frac{50.00}{25.0}$ $\frac{70.00}{25.0}$ $\frac{70.00}{25.0}$ 11 $\sqrt[40,00]{9.00}$ $\frac{15.00}{25.0}$ $\frac{70.00}{25.0}$ $\frac{70.00}{15.0}$ $\frac{75.0}{10.00}$ $\frac{75.0}{15.0}$ $\frac{75.0}{10.00}$ $\frac{75.0}{10.00}$ $\frac{75.0}{10.00}$ $\frac{75.0}{10.00}$ $\frac{75.0}{10.00$	[37.6			152.8			
23.2 91.7 25.30 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 65.20 % 11 40.00 50.00 65.20 % 11 40.00 50.00 75.0 75.0 75.0 75.0 11 50.00 75.0 <td>8*</td> <td>30.4</td> <td></td> <td></td> <td>123.2</td> <td>2</td> <td>4.68</td>	8*	30.4			123.2	2	4.68	
14.4 49.7 28.97 9* Total Package Input Power at Zero Flow ^c , d 0.0 kW 10 Isentropic Efficiency 65.20 % 11 40.00 40.00 65.20 % 11 40.00 50.00 50.00 75.0 75.0 11 90.00 25.00 25.00 75.0 75.0 75.0 75.0 75.0 10 15.00 15.00 15.00 15.00 175.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 0 to 25% over maximum capacity Note: Y-Axis Scale, 0 to 25% over maximum capacity Note: Craph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 0 to 25% over maximum capacity Note: Y-Axis Scale, 0 to 25% over maximum capacity Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 <td cols="15.500.000000000000000000000000000000</td"><td>ŀ</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>ŀ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ŀ						
9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 65.20 % 11	F							
10 Isentropic Efficiency 65.20 % 11	Q*		Input Powe	r at Zero Flow ^{c, d}		2		
11 	-		-	at Zero Tiow				
0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity or models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administration on the data in Section 8 Note: Y-Axis Scale, 0 to 25% over maximum capacity NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this die. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>					-			
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity or models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administration onsult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this di c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate at specified conditions Volume Flow Rate Meabwer Notes NOTE: Volume Flow Rate Note: Volume Flow Rate Relow %	11	Specific Por (kW/100 AC	20.00					
NOTES: www.cagi.org a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this dt b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this dt c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate at specified conditions Volume Flow Rate Mathematical distribution Volume Flow Rate Mathematical distribution % Motion % Mathematical distribution % Mathematical distribution % Mathematical distribution % Mathematical distrelimited distribution %	11	Specific Pov (kW/100 AC	20.00	25.0 50.0	750 1000	125.0 11		
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this distribution of the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this distribution. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this distribution. c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy volume Flow Rate Consumption main fita / min % % %	11	Specific Por (RW/100 AC	20.00	(Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, -	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece	Section 8	50.0 175.0	
at specified conditions Volume Flow Rate Consumption Power m ³ /min ft ³ /min % % Below	For model	ls that are tested in th AGI website for a list	20.00 15.00 10.00 0.0 N The CAGI Perfection	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, (Dormance Verification P ts in the third party ver	Capacity (ACFM) and representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program:	Section 8 ssary above 35 rified by the thirr www.cagi.org	d party administrate	
Below	For model	ls that are tested in th AGI website for a list a. Measured a ACFM is ac b. The operati c. No Load Pc manufactur d. Tolerance is	20.00 15.00 10.00 0.0 N ne CAGI Perfet t of participan at the discharge ctual cubic feet ng pressure at ' ower. In accom er may state 'n s specified in IS	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, X-Axis Scale, 0 prmance Verification P ts in the third party ver terminal point of the cor per minute at inlet cond which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on SO 1217, Annex E, as sh	Capacity (ACFM) tual representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. 8) and Electrical Consumpti nex E, if measurement of no the test report. own in table below:	Section 8 ssary above 35 rified by the thirr www.cagi.org nce with ISO 1217 ion (Item 8) were : load power equal	d party administrate 7, Annex E; measured for this data	
	For model onsult C/ NOTES:	ls that are tested in th AGI website for a list a. Measured a ACFM is a b. The operati c. No Load Pe manufactur d. Tolerance i NOTE: Th Volume Flow at specified con	20.00 15.00 10.00 0.0 N The CAGI Perfet t of participan t the discharge ctual cubic feet ng pressure at " ns specified in I: e terms "power / Rate ditions	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, X-Axis Scale, (ormance Verification P ts in the third party ver terminal point of the cor per minute at inlet cond which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on SO 1217, Annex E, as sh " and "energy" are synor	Capacity (ACFM) ual representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan titions. 8) and Electrical Consumpt inex E, if measurement of no the test report. own in table below: mymous for purposes of this of Specific Energy	Section 8 ssary above 35 rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were : load power equal document.	d party administrate 7, Annex E; measured for this data	

ROT 031.1

0.5 to 1.5

1.5 to 15

Above 15

17.6 to 53

53 to 529.7

Above 529.7

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

+/- 6

+/- 5

+/- 4

ROT 031.1

1.5 to 15

Above 15

53 to 529.7

Above 529.7

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

	Rotary Compressor:	Variable Frequency Drive
--	---------------------------	--------------------------

	1	WIO	DEL DATA - FU	OR COMPRESSE	JAIN	
1	Manufacturer:	FS-C	urtis			
	Model Number	:: NxV3	80-175		Date:	03/03/21
2	X Air-co	oled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Oper	ating Press	ure ^b	175	" of bluges.	psig
4	Drive Motor N			40		hp
5	Drive Motor N	ominal Eff	iciency	93.0		percent
6	Fan Motor Nor	ninal Ratin	g (if applicable)	1.5		hp
7	Fan Motor Nor	ninal Effici	ency	87.5		percent
	Input Power	: (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
	36.0			134.9		26.69
8*	33.4			122.7		27.22
	23.5			87.5		26.86
	21.5			75.3		28.55
	16.5		c, d	48.0		34.38
9*	Total Package	-	er at Zero Flow ^{6, u}	0.0		kW
10	Isentropic Effic	eiency		64.00		%
11	Specific Power (KW/100 ACFN)	25.00		75.0 100.0 Capacity (ACFM) sual representation of the data in		50.0 175.0
			Note: Y-Axis Scale, 10 to 35,	+ 5kW/100acfm increments if nece 0 to 25% over maximum capacity		
				Program, these items are ve rification program:	-	rd party administrate
Consult C NOTES:	CAGI website for a lis a. Measured a ACFM is a b. The operati c. No Load Po manufactur d. Tolerance i	t of participan t the discharg ctual cubic fee ng pressure at ower. In accon er may state " s specified in	nts in the third party ver- e terminal point of the co et per minute at inlet cond which the Capacity (Iten rdance with ISO 1217, An not significant" or "0" on ISO 1217, Annex E, as sh	rification program: mpressor package in accordat litions. n 8) and Electrical Consumpt nnex E, if measurement of no the test report.	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa locument.	7, Annex E; measured for this data
Consult C NOTES:	CAGI website for a lis a. Measured a ACFM is a b. The operati- c. No Load Pa- manufactur d. Tolerance i NOTE: Th Volume Flow at specified cor	t of participan at the discharge ctual cubic fee ng pressure at ower. In accor er may state " s specified in e terms "powe v Rate aditions	nts in the third party ver- e terminal point of the co et per minute at inlet cond which the Capacity (Iten rdance with ISO 1217, An not significant" or "0" on ISO 1217, Annex E, as sh	rification program: mpressor package in accordat litions. n 8) and Electrical Consumpt: nnex E, if measurement of no the test report. nown in table below:	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa	7, Annex E; measured for this data
Consult C	CAGI website for a lis a. Measured a ACFM is a b. The operati c. No Load Po- manufactur d. Tolerance i NOTE: Th Volume Flow at specified cor m ³ /min Relow	t of participan at the discharge ctual cubic fee org pressure at ower. In accor er may state " s specified in e terms "powe v Rate	nts in the third party ver- e terminal point of the co- st per minute at inlet cond which the Capacity (Iten rdance with ISO 1217, An- not significant" or "0" on ISO 1217, Annex E, as sh pr" and "energy" are syno	rification program: mpressor package in accordan litions. a 8) and Electrical Consumpti nnex E, if measurement of no the test report. nown in table below: nymous for purposes of this of Specific Energy	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa locument.	7, Annex E; measured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

			WIU	DEL DATA -	FOR COM	-KESSE	DAIK	
1	Manufa	acturer:	FS-C	urtis				
	Model	Number:	NxV3	7-100			Date:	03/03/21
2	X	Air-coc	oled	Water-cooled			Type:	Screw
							# of Stages:	1
3*	Full Lo	ad Opera	ting Press	ure	1)0		b psig
4	1	-	minal Rat			0		hp
5			minal Effi	Č.		5.0		percent
6		Fan Motor Nominal Rating (if applicable) 1.5 hp						
7	Fan Mo	Fan Motor Nominal Efficiency				7.5		percent
	Inpu	Input Power (kW)			Capacity	(acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
		46.7			22	7.0		20.57
8*	40.3			19	7.9		20.36	
		27.7			14	0.5		19.72
		21.3			10	9.8		19.40
		11.3				.8		21.81
9*	Total P	Total Package Input Power at Zero Flow 6.0 kW						
10	Isentro	sentropic Efficiency 66.40 %						
11		Specific Power (kW/100 ACFM)	30.00					
			10.00					225.0 250.0
	0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity							
					e .			rd party administrate
Consult C NOTES:	a. M A b. T c. N m d. T	Measured at ACFM is act The operatin To Load Pown nanufactures Tolerance is	the discharge ual cubic fee g pressure at ver. In accon r may state "n specified in 1	e terminal point of the t per minute at inlet cu which the Capacity (I dance with ISO 1217, ot significant" or "0" SO 1217, Annex E, as r" and "energy" are sy	compressor packa onditions. tem 8) and Electri Annex E, if meas on the test report. s shown in table b	ge in accorda cal Consumpt urement of no clow:	tion (Item 8) were o load power equa	e measured for this dat
		lume Flow I		Volume Flow Rat		Energy	Zero Flow Power	
	ut spe							
	$\frac{\text{m}^3 / \text{min}}{\text{m}^3}$		<u>min</u>	%		6 6	%	

M

R

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
31.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		_				
1	Manufacturer:	FS-Cu	irtis			
	Model Number:	NxV3	7-125		Date:	03/03/21
2	X Air-coole	ed	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Operati	ing Pressu	ure b	125	π of stages.	b psig
4	Drive Motor Non	-		50		hp
5	Drive Motor Non		*	93.0		percent
6	Fan Motor Nomir			1.5		hp
7	Fan Motor Nomir		/	87.5		percent
	Input Power (k			Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
	48.3			210.3		22.97
8*	42.1			183.4		22.96
	29.6			133.0		22.26
	23.5			104.7		22.45
	13.0		e d	50.9		25.54
9*	Total Package Inp	out Power	at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Efficie	ncy		66.10		%
11	22 KW100 ACFM	0.00 5.00 5.00 5.00 0.00 0.0	25.0 50.0 75.0		50.0 175.0	
			Note: Graph is only a vis iote: Y-Axis Scale, 10 to 35, 4 X-Axis Scale, 0	apacity (ACFM) ual representation of the data in 5kW/100acfm increments if nece to 25% over maximum capacity	essary above 35	
	AGI website for a list of a. Measured at th ACFM is actur b. The operating c. No Load Powe manufacturer d. Tolerance is sp	f participan ne discharge al cubic feet pressure at v er. In accord may state "n pecified in IS	ts in the third party veri terminal point of the con per minute at inlet condi which the Capacity (Item lance with ISO 1217, An ot significant" or "0" on to SO 1217, Annex E, as sho	pressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no he test report.	www.cagi.org nce with ISO 121 ion (Item 8) were load power equa document.	17, Annex E; e measured for this data
					NO LOAU /	
	Volume Flow Raat specified condit m^3 / min ft^3 / r	ions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power	

M

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
OT 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 Model Number: NxV37-150 Date: 03/03/21 2 \overline{X} Air-cooled Water-cooled Type: Screw # of Stages: 1 3* Full Load Operating Pressure 50 hp 5 Drive Motor Nominal Rating 50 hp 5 Drive Motor Nominal Efficiency 93.0 percent 6 Fan Motor Nominal Efficiency 87.5 percent 7 Fan Motor Nominal Efficiency 87.5 percent 40.3 189.2 21.30 8* 40.9 168.3 24.30 30.2 124.0 24.35 24.7 100.2 24.65 14.4 49.0 29.39 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 67.00 % 11 90.0 25.0 50.0 15.0 15.0 15.0 10 Isentropic Efficiency 0.0 KW Capacity (KCM) 15.0 2		1		DEL DATA - FO					
2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure 9 150 psig 9 4 Drive Motor Nominal Rating 50 hp 9 93.0 percent 6 Fan Motor Nominal Efficiency 93.0 percent 1 9 1 <th>1</th> <th>Manufacturer:</th> <th>FS-C</th> <th>urtis</th> <th></th> <th></th> <th></th>	1	Manufacturer:	FS-C	urtis					
Image: constraint of the constr		Model Numbe	r: NxV	37-150		Date:	03/03/21		
3^* Full Load Operating Pressure150psig4Drive Motor Nominal Rating50hp5Drive Motor Nominal Efficiency93.0percent6Fan Motor Nominal Efficiency87.5percent7Fan Motor Nominal Efficiency87.5percent7Fan Motor Nominal Efficiency87.5percent8*40.3189.221.308*40.9168.324.3030.2124.024.3524.7100.224.6514.449.029.399*Total Package Input Power at Zero Flow67.0010Isentropic Efficiency67.0090025.050.075.010025.050.075.0100125.0150.0175.020000.025.050.0150010.0125.0150.0150010.025.050.0150010.0150.0175.0150010.0150.0175.0150010.055.550.0150010.015.0150.0150010.015.0150.0150010.015.0150.0150010.015.0150.0150010.015.5150.0150010.015.5150.0150010.015.5150.0150010.015.5150.0150010.015.51500 <td< td=""><td>2</td><td>X Air-co</td><td>ooled</td><td>Water-cooled</td><td></td><td>Type:</td><td>Screw</td></td<>	2	X Air-co	ooled	Water-cooled		Type:	Screw		
3^* Full Load Operating Pressure150psig4Drive Motor Nominal Rating50hp5Drive Motor Nominal Efficiency93.0percent6Fan Motor Nominal Efficiency87.5percent7Fan Motor Nominal Efficiency87.5percent7Fan Motor Nominal Efficiency87.5percent8*40.3189.221.308*40.9168.324.3030.2124.024.3524.7100.224.6514.449.029.399*Total Package Input Power at Zero Flow67.0010Isentropic Efficiency67.0090025.050.075.010025.050.075.0100125.0150.0175.020000.025.050.0150010.0125.0150.0150010.025.050.0150010.0150.0175.0150010.0150.0175.0150010.055.550.0150010.015.0150.0150010.015.0150.0150010.015.0150.0150010.015.0150.0150010.015.5150.0150010.015.5150.0150010.015.5150.0150010.015.5150.0150010.015.51500 <td< td=""><td></td><td></td><td></td><td></td><td></td><td># of Stages:</td><td>1</td></td<>						# of Stages:	1		
4 Drive Motor Nominal Rating 50 hp 5 Drive Motor Nominal Efficiency 93.0 percent 6 Fan Motor Nominal Efficiency 93.0 percent 7 Fan Motor Nominal Efficiency 87.5 percent 8* Input Power (kW) Capacity (acfm) ^{4,d} Specific Power 40.3 189.2 21.30 8* 40.9 168.3 24.30 30.2 124.0 24.35 24.7 100.2 24.65 14.4 49.0 29.39 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 67.00 % 11 90 25.00 25.00 15.00 17.5 20.0 10.0 25.00 25.00 15.00 17.5 20.0 0.0 kW 10 Isentropic Efficiency 67.00 17.0 20.0 15.00 17.5 20.0 10.0 25.00 15.00 17.5 20.0 15.00 17.5 20.0 10.0	3*	Full Load Ope	rating Pres	sure	150	in or buges.	h		
5 Drive Motor Nominal Efficiency 93.0 percent 6 Fan Motor Nominal Efficiency 87.5 percent 7 Fan Motor Nominal Efficiency 87.5 percent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 40.3 189.2 21.30 8* 40.9 168.3 24.30 30.2 124.0 24.35 24.7 100.2 24.65 14.4 49.0 29.39 9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 67.00 % Note: Graph is only a visual representation of the data in Section 8 Note: Graph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a v	4	-			50				
7 Fan Motor Nominal Efficiency 87.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 40.3 189.2 21.30 30.2 124.0 24.35 24.7 100.2 24.65 14.4 49.0 29.39 9* Total Package Input Power at Zero Flow 67.00 % 10 Isentropic Efficiency 67.00 % 11 $10^{65}_{15,00}$ 25.0 50.0 75.0 100.0 1250 150.0 125.0 20.0 15.00 25.0 50.0 75.0 100.0 1250 150.0 175.0 200.0 Note: Graph is only a visual representation of the data in Section 8 Note: Graph is only a visual representation of the data in Section 8 Note: Graph is only a visual representation of the data in Section 8 Note: Graph is only a visual representation of the data in Section 8 Note: Graph is only a visual representation of the data in Section 8	5	Drive Motor N	lominal Eff	iciency	93.0		percent		
$11 \qquad $	6	Fan Motor No:	minal Ratir	ıg (if applicable)	1.5		hp		
$11 \qquad $	7	Fan Motor No	minal Effic	iency	87.5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Input Powe	r (kW)		Capacity (acfm) ^{a,}	1	-		
$11 \qquad \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $		40.3							
$11 \qquad \begin{array}{ c c c c c c c } \hline 24.7 & 100.2 & 24.65 \\ \hline 14.4 & 49.0 & 29.39 \\ \hline 9^* & Total Package Input Power at Zero Flow c, d & 0.0 & kW \\ \hline 10 & Isentropic Efficiency & 67.00 & \% \\ \hline 10 & Isentropic fill ciency & 50.0 & 75.0 & 10.0 & 125.0 & 150.0 & 175.0 & 200.0 \\ \hline 0 & 0 & 0 & 25.0 & 50.0 & 75.0 & 100.0 & 125.0 & 150.0 & 175.0 & 200.0 \\ \hline & & & & & & & & & & & & & & & & & &$	8*	40.9			168.3		24.30		
14.449.029.399*Total Package Input Power at Zero Flow $^{c, d}$ 0.0kW10Isentropic Efficiency67.00%11111111100.0010.0010.0010.00111111111110.00		30.2			124.0		24.35		
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 67.00 % 11 $\sqrt[40.00]{35.00}$ $\sqrt[40.00]{35.00}$ $\sqrt[30.00]{25.00}$ $\sqrt[30$		24.7			100.2		24.65		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		c.d.			29.39		
11 11 11 11 11 11 11 11 11 11	9*		Package Input Power at Zero Flow 0.0 kW						
11 Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	10	Isentropic Effi	entropic Efficiency 67.00 %						
0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	11	Specific Power (AW/100 ACFM)	25.00						
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35				25.0 50.0	75.0 100.0 100	150.0	175.0 200.0		
Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35			0.0			.0 150.0	1/5.0 200.0		
	or mod	els that are tested in t	he CAGI Per		to 25% over maximum capacit	у	ird party administrate		
onsult CAGI website for a list of participants in the third party verification program: www.cagi.org				X-Axis Scale, 0 formance Verification Pr	to 25% over maximum capacit	y verified by the th			
 onsult CAGI website for a list of participants in the third party verification program: www.cagi.org a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer any state "part implicant" or "0" on the text report. 		CAGI website for a list a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance	st of participa at the discharg actual cubic fe ing pressure a ower. In acco rer may state ' is specified in	X-Axis Scale, 0 formance Verification Pr nts in the third party ver ge terminal point of the con et per minute at inlet condi t which the Capacity (Item rdance with ISO 1217, An not significant" or "0" on 1 ISO 1217, Annex E, as sho	to 25% over maximum capacit rogram, these items are ification program: npressor package in accor tions. 8) and Electrical Consum nex E, if measurement of the test report. own in table below:	verified by the th www.cagi.org dance with ISO 12 ption (Item 8) wer no load power equ	17, Annex E; e measured for this dat		
 a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: 	Consult C NOTES:	CAGI website for a list a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance NOTE: TI	st of participa at the discharg actual cubic fe ing pressure a 'ower. In accor rer may state ' is specified in he terms "pow w Rate	X-Axis Scale, 0 formance Verification Pr nts in the third party ver ge terminal point of the con et per minute at inlet condi t which the Capacity (Item rdance with ISO 1217, An 'not significant'' or "0" on 1 ISO 1217, Annex E, as she er" and "energy" are synon	to 25% over maximum capacit rogram, these items are ification program: npressor package in accor tions. 8) and Electrical Consum nex E, if measurement of the test report. own in table below: lymous for purposes of the Specific Energy	y verified by the th <u>www.cagi.org</u> dance with ISO 12 ption (Item 8) wer no load power equ s document.	17, Annex E; e measured for this dat		
onsult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy	Consult C NOTES:	CAGI website for a list a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance NOTE: TI Volume Flow at specified co <u>m³/min</u> <u>ft</u>	at the discharg actual cubic fe ing pressure a ower. In accc rer may state ' is specified in he terms "pow w Rate nditions	X-Axis Scale, 0 formance Verification Pr nts in the third party ver et erminal point of the con et per minute at inlet condi t which the Capacity (Item rdance with ISO 1217, An not significant" or "0" on 1 ISO 1217, Annex E, as she er" and "energy" are synon Volume Flow Rate	to 25% over maximum capacit rogram, these items are ification program: npressor package in accor tions. 8) and Electrical Consum nex E, if measurement of the test report. own in table below: yymous for purposes of the Specific Energy Consumption	verified by the th www.cagi.org dance with ISO 12 ption (Item 8) wer no load power equ s document.	17, Annex E; e measured for this dat		

Me

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

	Rotary Compressor:	Variable Frequency Drive
--	---------------------------	--------------------------

		MO	DEL DATA - F(OR COMPRESSE) AIK	
1	Manufacturer:	FS-C	urtis			
	Model Numbe	r: NxV3	57-175		Date:	03/03/21
2	X Air-co	poled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	rating Press	ure ^b	175	" of Stagest	psig
4	Drive Motor N	Jominal Rati	ing	50		hp
5	Drive Motor N	lominal Effi	ciency	93.0		percent
6	Fan Motor No	minal Rating	g (if applicable)	1.5		hp
7	Fan Motor No	minal Effici	ency	87.5		percent
	Input Powe	r (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
	45.1			167.8		26.88
8*	40.3			150.2		26.83
	30.6			112.4		27.22
	25.9			93.9		27.58
	16.5		c, d	48.0		34.38
9*	Total Package	-	r at Zero Flow ^{C, U}	0.0		kW
10	Isentropic Effi	ciency		64.80		%
		35.00				
11	Specific Power (kW/100 ACFM)	35.00				
11	Specific Power (KW/100 ACFM)	30.00	25.0 50.0	75.0 100.0 125.0	150.0	
11	Specific Power (kW/100 ACFM)	30.00 25.00 20.00 15.00 10.00 0.0	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35,	75.0 100.0 125.0 Capacity (ACFM) sual representation of the data in + SkW100acfm increments if nece 0 to 25% over maximum capacity	Section 8	-
For mode	ls that are tested in t	30.00 25.00 20.00 15.00 10.00 0.0	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Ormance Verification P	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve	Section 8 ssary above 35 rified by the thi	ird party administrator
For mode Consult C	ls that are tested in t AGI website for a list	30.00 25.00 20.00 15.00 10.00 0.0 10.00 10.00 10.00 10.00 10.00 10.00 10.00 11.00 10.00 10.00 11.00 10.0	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Ormance Verification P nts in the third party ver	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program:	Section 8 ssary above 35 rified by the thi <u>www.cagi.org</u>	ird party administrato
For mode	ls that are tested in t AGI website for a lis a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance	30.00 25.00 20.00 15.00 10.00 0.0 10.00 0.0 10.00	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Formance Verification P nts in the third party ver e terminal point of the con- t per minute at inlet cond which the Capacity (Iten rdance with ISO 1217, Ar not significant" or "0" on ISO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. 18) and Electrical Consumpti nexe E, if measurement of no the test report.	Section 8 ssary above 35 riffed by the thi <u>www.cagi.org</u> nee with ISO 12 ion (Item 8) were load power equ	ird party administrato 17, Annex E; e measured for this data
For mode Consult C NOTES:	ls that are tested in t AGI website for a lis a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance	30.00 25.00 20.00 15.00 10.00 0.0 10.00 0.0 10.00	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Formance Verification P nts in the third party ver e terminal point of the con- t per minute at inlet cond which the Capacity (Iten rdance with ISO 1217, Ar not significant" or "0" on ISO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. . 8) and Electrical Consumpti mex E, if measurement of no the test report. own in table below:	Section 8 ssary above 35 riffed by the thi <u>www.cagi.org</u> nee with ISO 12 ion (Item 8) were load power equ	ird party administrato 17, Annex E; e measured for this data
For mode Consult C NOTES:	ls that are tested in t AGI website for a lis a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance NOTE: TI Volume Flov at specified co	30.00 25.00 20.00 15.00 10.00 0.0 10.00 0.0 10.00	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Tormance Verification P nts in the third party ver e terminal point of the co- t per minute at inlet cond which the Capacity (Iten dance with ISO 1217, Arn ot significant" or "0" on ISO 1217, Annex E, as sh rt" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. a 8) and Electrical Consumpt incex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy Consumption	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 12 on (Item 8) were load power equ locument.	ird party administrato 17, Annex E; e measured for this data
For mode Consult C NOTES:	Is that are tested in t AGI website for a lis a. Measured ACFM is a b. The operat c. No Load P manufactu d. Tolerance NOTE: TI Volume Flov at specified co <u>m³/min ft</u>	30.00 25.00 20.00 15.00 10.00 0.0 10.00 0.0 10.00	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Tormance Verification P nts in the third party ver e terminal point of the co- t per minute at inlet cond which the Capacity (Iten vance with ISO 1217, Arn ot significant" or "0" on ISO 1217, Annex E, as sh r" and "energy" are synor	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. a 8) and Electrical Consumpt morex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 12 ion (Item 8) were load power equ locument.	ird party administrato 17, Annex E; e measured for this data

Ν

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3} / \underline{min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
T 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

<u>R</u>CURTIS

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	Manufacturer:	FS (Curtis			
1					_ [
	Model Numbe	r: NxV	45-100		Date:	03/03/21
2	X Air-co	ooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	rating Pres	sure	100		psig
4	Drive Motor N	lominal Ra	ting	60		hp
5	Drive Motor N	lominal Eff	ficiency	95.4		percent
6	Fan Motor Nor	minal Ratir	ng (if applicable)	2		hp
7	Fan Motor Nor	minal Effic	iency	86.5	C	percent
	Input Powe	r (kW)		Capacity (acfm) ^{a,d}		pecific Power W/100 acfm) ^d
	58.5			288.3		0.29
8*	49.2			243.3	2	0.22
	39.0			197.9	1	9.71
	32.2			154.5	2	0.84
	18.1			63.5	2	8.50
9*			er at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Effi	ciency		64.10		%
11	Specific Power (KW/100 ACFM)	25.00 20.00 15.00 10.00 0.0		40.0 175.0 210.0 245.0 Capacity (ACFM)	280.0 315.0	350.0 385.0
			Note: Graph is only a vis	sual representation of the data in	Section 8	
			Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 0	+ 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve	ssary above 35	l party administrate
Consult C NOTES:	CAGI website for a list a. Measured : ACFM is a b. The operat c. No Load P manufactu d. Tolerance	at of participa at the discharg actual cubic fe ing pressure a ower. In accor rer may state ' is specified in	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P ants in the third party ver ge terminal point of the con et per minute at inlet cond it which the Capacity (Item ordance with ISO 1217, Ar "not significant" or "0" on ISO 1217, Annex E, as sh	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. 18) and Electrical Consumpti nex E, if measurement of no the test report.	rified by the third www.cagi.org nee with ISO 1217 ion (Item 8) were r load power equals document.	, Annex E; neasured for this dat
Consult C NOTES:	CAGI website for a list a. Measured : ACFM is a b. The operat c. No Load P manufactu d. Tolerance	at the discharge cutual cubic fe ing pressure a ower. In acco rer may state ' is specified in he terms "pow	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 formance Verification P ants in the third party ver ge terminal point of the con et per minute at inlet cond it which the Capacity (Item ordance with ISO 1217, Ar "not significant" or "0" on ISO 1217, Annex E, as sh	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan itions. 18) and Electrical Consumpti nex E, if measurement of no the test report. own in table below:	rified by the third www.cagi.org nee with ISO 1217 ion (Item 8) were r load power equals	, Annex E; neasured for this dat
Consult C	CAGI website for a list a. Measured i ACFM is a b. The operat c. No Load P manufactu d. Tolerance NOTE: TI Volume Flov at specified co <u>m³/min</u> <u>ft</u>	at the discharge cutual cubic fe ing pressure a ower. In acco rer may state ' is specified in he terms "pow	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 4 formance Verification P ants in the third party ver ge terminal point of the cor et per minute at inlet cond t which the Capacity (Item ordance with ISO 1217, Ar "not significant" or "0" on ISO 1217, Annex E, as sh ver" and "energy" are synor	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: npressor package in accordan itions. a 8) and Electrical Consumpt: nex E, if measurement of no the test report. own in table below: nymous for purposes of this of Specific Energy	rified by the thire www.cagi.org nee with ISO 1217 ion (Item 8) were r load power equal: document.	, Annex E; neasured for this dat

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

	1	110		OR COMPRESSE		
1	Manufacturer:	FS-C	urtis			
	Model Numbe	er: NxV4	5-125		Date:	03/03/21
2	X Air-co	ooled	Water-cooled		Туре:	Screw
					# of Stages:	1
3*	Full Load Ope	rating Press	ure	125	# 01 Buges.	b psig
4	Drive Motor N	-		60		hp
5	Drive Motor N		č –	95.4		percent
6			g (if applicable)	2		hp
7	Fan Motor No	minal Effici	ency	86.5		percent
	Input Powe	er (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
	60.4			262.7		22.99
8*	51.7			227.6		22.72
	42.7	,		188.0		22.71
	35.4			148.8		23.79
	22.0		, 7 El c, d	70.5		31.21
9*	Total Package	-	r at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Effi	ciency		63.30		%
11	Specific Power (kW/100 ACFM)		Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, +	Capacity (ACFM) ual representation of the data in - 5kW/100acfm increments if nece		
onsult C	CAGI website for a list	st of participar at the discharge actual cubic fee	ormance Verification Pr ats in the third party veri terminal point of the con t per minute at inlet condi which the Capacity (Item	pressor package in accorda	www.cagi.org nce with ISO 121 ion (Item 8) were	17, Annex E; e measured for this dat
	c. No Load F manufactu	Power. In account	not significant" or "0" on t			
J	c. No Load F manufactu d. Tolerance	Power. In accor rer may state "in is specified in 1	not significant" or "0" on t SO 1217, Annex E, as sho	own in table below: ymous for purposes of this o	No Loau /	
J	c. No Load F manufactu d. Tolerance	Power. In accor rer may state " is specified in he terms "powe	not significant" or "0" on t SO 1217, Annex E, as sho	own in table below:	document. Zero Flow Power	
J	c. No Load F manufactu d. Tolerance NOTE: T	Power. In accor rer may state " is specified in he terms "powe w Rate inditions	not significant" or "0" on t SO 1217, Annex E, as sho r" and "energy" are synon	own in table below: ymous for purposes of this of Specific Energy	Zero Flow	

M

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / \min}$	<u>ft³ / min</u>	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
031.1	Above 15	Above 529.7	+/- 4	+/- 5	

0.5 to 1.5

1.5 to 15

Above 15

ROT 031.1

17.6 to 53

53 to 529.7

Above 529.7

+/- 6

+/- 5

+/- 4

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor:	Variable Frequency Drive
---------------------------	--------------------------

		МС	DEL DATA - FO	OR COMPRESSE	D AIR	
1	Manufacture	er: FS-C	Curtis			
	Model Num	ber: NxV	45-150		Date:	03/03/21
2	X Air-	cooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Op	perating Pres	sure	150		psig
4	Drive Motor	Nominal Ra	ting	60		hp
5	Drive Motor		ý	95.4		percent
6			ng (if applicable)	2		hp
7	Fan Motor N		iency	86.5		percent Specific Power
	Input Pov	ver (kW)		Capacity (acfm) ^{a,d}		kW/100 acfm) ^d
	61	.1		244.7		24.97
8*	53	.1		210.6		25.21
	45	.9		172.6		26.59
	38			135.2		28.33
0.*	24		c, d	64.2		38.63
9* 10	Isentropic Ef		er at Zero Flow ^{c, d}	0.0 60.80		%
	Liena opre 24	, increase of the second s		<u></u>	ļ	,,,
11	Specific Power (kW/100 ACFM)	30.00 25.00 20.00				
		10.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, -	00.0 125.0 150.0 175.0 Capacity (ACFM) ual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity	Section 8	0 250.0 275.0
			formana Varification D	rogram, these items are ve	rified by the thi	
	CAGI website for a a. Measure ACFM i b. The ope c. No Loac manufac d. Tolerand	list of participa ed at the discharg s actual cubic fe rating pressure a l Power. In acco turer may state ' ce is specified in	nts in the third party ver ge terminal point of the cor et per minute at inlet cond t which the Capacity (Item rodance with ISO 1217, An 'not significant'' or "0" on ISO 1217, Annex E, as sh	ification program: npressor package in accordations. 8) and Electrical Consumpti nex E, if measurement of no the test report.	www.cagi.org	17, Annex E; e measured for this data
Consult C NOTES:	CAGI website for a a. Measure ACFM i b. The ope c. No Loac manufac d. Toleranc NOTE: Volume F at specified	list of participa ed at the discharg s actual cubic fe rating pressure a l Power. In acco turer may state ' ee is specified in The terms "pow	ants in the third party ver ge terminal point of the cor et per minute at inlet cond t which the Capacity (Item ordance with ISO 1217, An 'not significant'' or "0" on ISO 1217, Annex E, as sh er" and "energy" are synor Volume Flow Rate	ification program: mpressor package in accordan- itions. (8) and Electrical Consumpti- nex E, if measurement of no- the test report. own in table below: mymous for purposes of this of Specific Energy Consumption	www.cagi.org nce with ISO 121 ion (Item 8) were load power equa document.	17, Annex E; e measured for this data
Consult C NOTES:	CAGI website for a a. Measure ACFM i b. The ope c. No Loac manufac d. Tolerand NOTE: Volume F at specified <u>m³/min</u> Below	list of participa d at the discharg s actual cubic fe rating pressure a l Power. In acco turer may state ' tee is specified in The terms "pow low Rate	ants in the third party ver ge terminal point of the cor et per minute at inlet cond t which the Capacity (Item ordance with ISO 1217, An 'not significant'' or "0" on ISO 1217, Annex E, as sh er" and "energy" are synor	ification program: mpressor package in accordan- itions. 8) and Electrical Consumpti- nex E, if measurement of no the test report. own in table below: mymous for purposes of this of Specific Energy	www.cagi.org nce with ISO 121 ion (Item 8) were load power equa document.	17, Annex E; e measured for this data

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

	Μ	ODEL DATA - FO	OR COMPRESSE	D AIR		
1	Manufacturer: FS	-Curtis				
	Model Number: Nx	V55-100		Date:	03/03/21	
2	X Air-cooled	Water-cooled		Туре:	Screw	
				# of Stages:	1	
3*	Full Load Operating Pr	essure	100	π of stages.	psig ^b	
4	Drive Motor Nominal I		75		hp	
5	Drive Motor Nominal I		95.0		percent	
6	Fan Motor Nominal Ra	ting (if applicable)	2		hp	
7	Fan Motor Nominal Ef	ficiency	86.5		percent	
	Input Power (kW)		Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d		
	70.6		345.4		20.44	
8*	60.6		295.1		20.54	
	49.0		240.4		20.38	
	38.2		185.6		20.58	
0.*	<u>19.6</u>	c, d	71.3		27.49	
9* 10	Total Package Input Po	wer at Zero Flow	0.0 64.20		kW	
10	Isentropic Efficiency		04.20		%	
11	G 30.00 G 30.00 G 25.00 S 20.00 15.00 10.00 0.0	35.0 70.0 105.0 1	40.0 175.0 210.0 245.1	0 280.0 315.		
	0.0		Capacity (ACFM)	0 280.0 515.	5 550.0 585.0	
		Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	ual representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity			
	ACFM is actual cubic b. The operating pressur c. No Load Power. In a manufacturer may sta d. Tolerance is specified		ification program: npressor package in accorda titons. 8) and Electrical Consumpt nex E, if measurement of no the test report. own in table below:	www.cagi.org nce with ISO 121 ion (Item 8) were bload power equa	17, Annex E; e measured for this dat	
			1	NO LOAU /		
Г						
	Volume Flow Rate at specified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power		

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	ft^3 / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
ROT 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 Model Number: NxV55-125 Date: 03/03/21 2 X Air-cooled Water-cooled Type: Screw # Full Load Operating Pressure ^b 125 psig ^b 4 Drive Motor Nominal Rating 75 hp 5 Drive Motor Nominal Efficiency 95.0 percent 6 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* 61.3 228.5 61.3 7 Fan Motor Nominal Efficiency 86.5 percent 8* 61.3 228.7 50.7 50.7 219.4 23.11 40.5 170.7 40.5 170.7 23.73 26.7 94.0 28.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 63.70 % 11 90 35.0 700 105.0 140.0 25.0 315.0 350.0 12.00<		I		JDEL DATA - F	OR COMPRESSE	U AIK	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Manufacture	:: FS-C	Curtis			
1		Model Numb	er: NxV	55-125		Date:	03/03/2
3^* Full Load Operating Pressure 125 psight 4 Drive Motor Nominal Rating 75 hp 5 Drive Motor Nominal Rating (if applicable) 2 hp 6 Fan Motor Nominal Efficiency 95.0 percent 7 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* 61.3 268.0 22.87 50.7 219.4 23.11 40.5 170.7 23.73 26.7 94.0 28.40 9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 63.70 % 11 9 $\frac{40.00}{25.00}$ 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 26.7 9.0 15.0 15.0 15.0 10.0 35.0 70 15.0	2	X Air-o	cooled	Water-cooled		Туре:	Screw
3^* Full Load Operating Pressure 125 psight 4 Drive Motor Nominal Rating 75 hp 5 Drive Motor Nominal Rating (if applicable) 2 hp 6 Fan Motor Nominal Efficiency 95.0 percent 7 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* 61.3 268.0 22.87 50.7 219.4 23.11 40.5 170.7 23.73 26.7 94.0 28.40 9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 63.70 % 11 9 $\frac{40.00}{25.00}$ 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 26.7 9.0 15.0 15.0 15.0 10.0 35.0 70 15.0						# of Stages:	1
4 Drive Motor Nominal Rating 75 hp 5 Drive Motor Nominal Efficiency 95.0 percent 6 Fan Motor Nominal Efficiency 95.0 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 7 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 61.3 268.0 22.87 50.7 219.4 23.11 40.5 40.5 170.7 23.73 26.7 94.0 28.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 63.70 % 11 9 9 25.00 25.00 15.00 10.00 15.00 10.00 15.00 10.00 35.0 70.0 105.0 105.0 20.0 245.0 28.00 15.00 10.00 35.0 70.0 15.0 <t< td=""><td>3*</td><td>Full Load Op</td><td>erating Pres</td><td>sure</td><td>125</td><td>n of Burges.</td><td>h</td></t<>	3*	Full Load Op	erating Pres	sure	125	n of Burges.	h
6 Fan Motor Nominal Rating (if applicable) 2 hp 7 Fan Motor Nominal Efficiency 86.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 7 11 71.8 314.2 22.85 8* 61.3 268.0 22.87 50.7 219.4 23.11 40.5 170.7 23.73 26.7 94.0 28.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 63.70 % 11 9000000000000000000000000000000000000	4		-		75		
7 Fan Motor Nominal Efficiency 86.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 71.8 314.2 22.85 8* 61.3 268.0 22.87 50.7 219.4 23.11 40.5 170.7 23.73 26.7 94.0 28.40 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 63.70 % 11 $\sqrt[40.00]{9^{6}}$ $\frac{40.00}{25.00}$ $\frac{25.00}{20.00}$ $\frac{15.00}{20.00}$ 11 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8 Note: Craph is only a visual representation of the data in Section 8	5	Drive Motor	Nominal Ef	ficiency	95.0		percent
$11 \qquad $	6	Fan Motor N	ominal Rati	ng (if applicable)	2		hp
$11 \qquad $	7	Fan Motor N	ominal Effic	ciency	86.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Input Dewer (LW) Specific Po					
11 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		71.	8		314.2		
$11 \qquad \qquad \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	8*	61.	3		268.0		22.87
11 11 26.7 94.0 28.40 10 $1 Sentropic Efficiency$ 63.70 $9%$ 10 $1 Sentropic Efficiency$ 63.70 $%$ 10 $1 Sentropic Efficiency$ 10 $1 Sentropic Efficiency$ 11 11 11 11 11 11 11 1		50.	7		219.4	23.11	
9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 63.70 % 11 10 1000000000000000000000000000000000000		40.	5		170.7		23.73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		26.	7		94.0		28.40
11 11 11 11 11 11 11 11 11 11	9*	Total Packag	e Input Pow	ver at Zero Flow ^{c, d}	0.0		kW
11 Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 55W/100acfm increments if necessary above 35	10	Isentropic Eff	ficiency		63.70		%
10.00 0.0 35.0 70.0 105.0 140.0 175.0 210.0 245.0 280.0 315.0 350.0 Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 58W/100acfm increments if necessary above 35	11	Specific Power (kW/100 ACFM)	25.00	<u> </u>			
Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35				35.0 70.0 105.0	140.0 175.0 210.0	245.0 280.0	315.0 350.0
				Note: Graph is only a v Note: Y-Axis Scale, 10 to 35	Capacity (ACFM) visual representation of the data in , + 5kW/100acfm increments if nece	Section 8	
	NOTES:	ACFM is b. The oper c. No Load manufact d. Tolerance	actual cubic for ating pressure a Power. In acc urer may state e is specified in	eet per minute at inlet con at which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" of a ISO 1217, Annex E, as s	ditions. m 8) and Electrical Consumpt annex E, if measurement of no n the test report. shown in table below:	tion (Item 8) were b load power equa	e measured for this dat
 NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. 							
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state 'not significant'' or '0'' on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below:		Volume Flo	ow Rate		Specific Energy		
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document.		at specified c	onditions	-	Consumption	Zero Flow Power	

Me

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m}^3 / \underline{min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
31.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	Manufac	cturer:	FS-C	Curtis				<u>г</u>
	Model N	Jumber	: NxV	55-150			Date:	03/03/2
2	X	Air-co	oled	Wate	r-cooled		Type:	Screw
							# of Stages:	1
3*	Full Loa	d Oper	ating Pres	sure		150		psig ^b
4		-	ominal Ra			75		hp
5			ominal Ef		,	95.0		percen
6			ninal Rati			2		hp
7			ninal Effic		(priceste)	86.5		percen
,							1	Specific Power
	Input	Power	(K W)			Capacity (acfm) ^{a,}	($(kW/100 acfm)^d$
		69.1				277.4		24.91
8*		61.0		_		246.4		24.76
		54.6		_		212.4		25.71
		47.0		_		180.2		26.08
		35.2				122.3		28.78
9*	Total Pa	ickage l	Input Pow	er at Ze	ero Flow ^{c, d}	0.0		kW
10	Isentrop	ic Effic	iency			61.50		%
11		25.00 20.00 20.00						
			15.00	35.0 Note:		5.0 140.0 175.0 Capacity (ACFM) visual representation of the data	210.0 245.0	280.0 315.0
					xis Scale, 10 to 35	5, + 5kW/100acfm increments if n c, 0 to 25% over maximum capaci	ecessary above 35	
	AGI website a. Me AC b. Th c. No ma d. To	for a list easured at CFM is ac e operatin b Load Po inufacture lerance is	of participa t the dischar ctual cubic for ng pressure a ower. In accor- er may state s specified in	ants in th ge termina eet per min at which th ordance w "not signi a ISO 121'	e third party ve al point of the c nute at inlet con he Capacity (Ite rith ISO 1217, A ficant" or "0" o 7, Annex E, as s	Program, these items are erification program: ompressor package in accor ditions. m 8) and Electrical Consun Annex E, if measurement of n the test report. shown in table below: onymous for purposes of th	www.cagi.org dance with ISO 12 aption (Item 8) wer no load power equ	17, Annex E; e measured for this da
								1
		ime Flow				Specific Energy	Zero Flow	
		cified con		Volu	ume Flow Rate %	Specific Energy Consumption %	Zero Flow Power %	

M

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / \min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1				DDEL DATA - F	UR COMPRESSEI	JAIK	
	Manuf	facturer:	FS-0	Curtis			
	Model	Number	: NxV	75-100		Date:	03/03/21
2	X	Air-co	oled	Water-cooled		Type:	Screw
						# of Stages:	1
3*	Full Lo	oad Oper	ating Pres	ssure	100	" of Buges.	psig ^b
4	Drive	Motor N	ominal Ra	ating	100		hp
5	Drive	Motor N	ominal Ef	ficiency	95.4		percent
6	Fan M	otor Nor	ninal Rati	ng (if applicable)	3		hp
7	Fan M	otor Nor	ninal Effi	ciency	89.5		percent
	Input Power (kW)				Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d	
		100.0			498.8	20	.05
8*		83.3			422.0	19	
		68.5			347.8		.70
		52.4			266.5		.66
0*	T () I	26.6	I (D	c, d	120.7	22	.04
9*			•	ver at Zero Flow c, d	0.0 66.90		<u>kW</u> %
10	Isenuo	opic Effic	lency		00.70		70
11		. 📻					
11		Specific Power (RW/100 ACFM)	25.00	Note: Graph is only a v	5.0 210.0 245.0 280.0 315.0 3 Capacity (ACFM) isual representation of the data in 5.5W/1000/fp.incerometric if new	Section 8	
	els that are t		20.00	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale,	Capacity (ACFM)	Section 8 ssary above 35	
*For mode	CAGI websit	tested in the te for a liss Measured a ACFM is a ACFM is a The operati No Load Po manufactur Tolerance i	20.00 15.00 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00 0.0 10.00	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification I ants in the third party ve ge terminal point of the co eet per minute at inlet cond at which the Capacity (Ite ordance with ISO 1217, A not significant' or "0" on n ISO 1217, Annex E, as si	Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. n 8) and Electrical Consumpti nnex E, if measurement of no the test report.	Section 8 ssary above 35 riffed by the third j www.cagi.org nee with ISO 1217, . on (Item 8) were m load power equals l	party administrator Annex E; easured for this data
*For mode Consult C NOTES:	CAGI websit	tested in the te for a liss Measured a ACFM is a ACFM is a ACFM is a The operati No Load Po- manufactur Tolerance i NOTE: The Dume Flow pecified cor	20.00 15.00 10.00 0.0 10.00 1	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification I ants in the third party ve rge terminal point of the cc eet per minute at inlet cono at which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as sl ver" and "energy" are sync Volume Flow Rate	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. n 8) and Electrical Consumpti nnex E, if measurement of no the test report. nown in table below: nymous for purposes of this of Specific Energy Consumption	Section 8 ssary above 35 rified by the third f www.cagi.org nee with ISO 1217, . on (Item 8) were me load power equals l locument.	party administrator Annex E; easured for this data
*For mode Consult C NOTES:	CAGI websit	tested in the tested in the te for a liss ACFM is a ACFM is a ACFM is a No Load Person manufactur Tolerance i NOTE: The plume Flow pecified cor ft ³	20.00 15.00 10.00 0.0 10.00 10.	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification I ants in the third party ve rge terminal point of the cc eet per minute at inlet cono at which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" on n ISO 1217, Annex E, as si ver" and "energy" are sync	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. n 8) and Electrical Consumpt nnex E, if measurement of no the test report. nown in table below: nymous for purposes of this of Specific Energy	Section 8 ssary above 35 rified by the third 1 www.cagi.org nee with ISO 1217, . ion (Item 8) were ma load power equals 1 locument.	party administrator Annex E; easured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

2 X Air-cooled Water-cooled Type: Screw # of Stages: 1 3* Full Load Operating Pressure ^b 125 psig ^b 4 Drive Motor Nominal Rating 100 hp 5 Drive Motor Nominal Efficiency 95.4 percenter 6 Fan Motor Nominal Rating (if applicable) 3 hp				MOI	DEL DATA - FO	OR COMPRESSE	D AIR	
2 X Air-cooled Water-cooled Type: Screw # of Stages: 1 3* Full Load Operating Pressure ^b 125 psig ^b 4 Drive Motor Nominal Rating 100 hp 5 Drive Motor Nominal Efficiency 95.4 percent 6 Fan Motor Nominal Efficiency 89.5 percent 7 Fan Motor Nominal Efficiency 89.5 percent 99.3 450.8 22.03 8* 8* 85.0 388.4 21.03 8* 85.0 388.4 21.03 9* Total Package Input Power at Zero Flow ^{5,d} 0.0 kW 10 Isentropic Efficiency 66.30 % % 11 Vietage Input Power at Zero Flow ^{5,d} 0.0 kW % 10 Isentropic Efficiency 66.30 % % 10 Isentropic Efficiency XM Section Program, these items are verified by the third party administrat Consult CAGI website for a list of participants in the third party verification program. XMV: Cagiory XMW: Section Program, these items are verified by the third party administrat Consult CAGI website for a list o	1	Manufa	acturer:	FS-Cu	ırtis			
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		Model	Number	r: NxV7:	5-125		Date:	03/03/21
3* Full Load Operating Pressure 125 psight 4 Drive Motor Nominal Rating 100 hp 5 Drive Motor Nominal Efficiency 95.4 percent 6 Fan Motor Nominal Efficiency 89.5 percent 7 Fan Motor Nominal Efficiency 89.5 percent 10 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 85.0 388.4 21.88 7.0 326.6 22.03 8* 72.0 326.6 22.03 9* Total Package Input Power at Zero Flow ^{C,d} 0.0 kW 10 Isentropic Efficiency 66.30 % 9* Total Package Input Power at Zero Flow ^{C,d} 0.0 kW 10 Isentropic Efficiency 66.30 % Vote: Set at a strip of the strip at a strip of the stri	2	X	Air-co	ooled	Water-cooled		Type:	Screw
3* Full Load Operating Pressure 125 psight 4 Drive Motor Nominal Rating 100 hp 5 Drive Motor Nominal Efficiency 95.4 percent 6 Fan Motor Nominal Efficiency 89.5 percent 7 Fan Motor Nominal Efficiency 89.5 percent 10 Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8* 85.0 388.4 21.88 7.0 326.6 22.03 8* 72.0 326.6 22.03 9* Total Package Input Power at Zero Flow ^{C,d} 0.0 kW 10 Isentropic Efficiency 66.30 % 9* Total Package Input Power at Zero Flow ^{C,d} 0.0 kW 10 Isentropic Efficiency 66.30 % Vote: Set at a strip of the strip at a strip of the stri							# of Stages:	1
4 Drive Motor Nominal Rating 100 hp 5 Drive Motor Nominal Rating (if applicable) 3 hp 6 Fan Motor Nominal Efficiency 89.5 percent 7 Fan Motor Nominal Efficiency 89.5 percent 8# Specific Power (kW/100 acfm) ^{4,d} (kW/100 acfm) ^{4,d} 99.3 450.8 22.03 8* 85.0 388.4 21.88 72.0 326.6 22.05 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 66.30 % 10 Isentropic Efficiency 66.30 % 10 Isentropic Efficiency 8.0 10.0 kW 11 Very 400 25.00	3*	Full Lo	ad Oper	rating Pressu	ıre ^b		0	psig ^b
6 Fan Motor Nominal Rating (if applicable) 3 hp 7 Fan Motor Nominal Efficiency 89.5 percentive (kW/100 acfm) ^{d,d} 99.3 450.8 22.03 8* 85.0 388.4 21.88 72.0 326.6 22.05 58.9 258.9 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ⁶ , ^d 0.0 kW 10 Isentropic Efficiency 66.30 % 11 90.0 10.0 kW 10.0 kW 11 90.0 10.0 kW 10.0 10.0 kW 11 90.0 10.0 15.0 210.0 25.0 9.0 11 90.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 Isentropic Efficiency 66.30 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	4					100		hp
7 Fan Motor Nominal Efficiency 89.5 percent Input Power (kW) Capacity (acfm) ^{8,d} Specific Power 99.3 450.8 22.03 8* 85.0 388.4 21.88 7.0 326.6 22.05 58.9 258.9 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 66.30 % 11 $\sqrt[40.00]{\frac{9}{0.00}}$ $\frac{100}{20.00}$ $\frac{100}{0.00}$ $\frac{100}{0.00}$ 11 $\sqrt[40.00]{\frac{9}{0.00}}$ $\frac{100}{20.00}$ $\frac{100}{0.00}$ $\frac{100}{0.00}$ $\frac{100}{0.00}$ 11 $\sqrt[40.00]{\frac{100}{0.00}}$ $\frac{100}{20.00}$ $\frac{100}{0.00}$ $\frac{100}{0.00}$ $\frac{100}{0.00}$ $\frac{100}{0.00}$ 12 $\sqrt[40.00]{\frac{100}{0.00}}$ $\frac{100}{0.00}$ $\frac{100}$	5				į	95.4		percent
Input Power (kW) Capacity (acfm) ^{a.d} Specific Power (kW/100 acfm) ^{d.d} 8* 85.0 388.4 21.03 8* 85.0 388.4 21.88 72.0 326.6 22.05 58.9 258.9 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow Cr.d 0.0 kW 10 Isentropic Efficiency 66.30 % 10 Isentropic Efficiency % % 11 % % % % 12 % % % % % 1300 % % % %<								hp
Input Power (kW) Capacity (acfm) ^{0,d} (kW/100 acfm) ^d 8* 85.0 388.4 22.03 8* 85.0 388.4 21.88 72.0 326.6 22.05 58.9 258.9 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ^{6,d} 0.0 kW 10 Isentropic Efficiency 66.30 $\%$ 10 Isentropic Efficiency 66.30 $\%$ 10 $500^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ 100 $500^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ 100 $50^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ $150^{-0.00}$ 10	7	Fan Mo	otor Nor	ninal Efficie	ency		percent Specific Power	
99.3 450.8 22.03 8* 85.0 388.4 21.88 72.0 326.6 22.05 58.9 22.89 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 66.30 % 11 $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ 11 $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0.00}^{0.00}$ 11 $\sqrt[40.00]_{0.00}^{0.00}$ $\sqrt[40.00]_{0$		Inpu	at Power	r (kW)		Capacity (acfm) ^{a,d}	_	
72.0 326.6 22.05 58.9 258.9 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 66.30 % 10 Isentropic Efficiency 66.30 % 11 $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ 10 Isentropic Efficiency 66.30 % $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ 10 $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ 10 $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ 11 $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0.00}$ 10 $\sqrt[40.00]_{0.00}$ $\sqrt[40.00]_{0$		99.3				450.8		
S8.9 258.9 22.75 32.2 119.7 26.90 9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 66.30 % 10 Isentropic Efficiency 66.30 % 11 $u_{0,0}$ $u_{$	8*		85.0			388.4	21.88	
32.2 119.7 26.90 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 66.30 % 10 Isentropic Efficiency 66.30 % 11			72.0			326.6	22.05	
9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 66.30 % 11 40.00 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 70.0 10.00 15.00 10.00 35.0 70.0 10.50 10.00 Capacity (ACFM) Nete: Y-Aris Scale, 10 35 X-Axis Scale, 0 10 X-Axis Scale, 0 10 25% over maximum capacity FFor models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrat Consult CAGI website for a list of participants in the third party verification program: X-Axis Scale, 0 10 25% over maximum capacity XMW.cagi.org NOTES: A Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this d c. No Load Power. In accordance with ISO 1217,		58.9				258.9	22.75	
9* Total Package input Power at Zero Flow 0.0 kw 10 Isentropic Efficiency 66.30 % 11					c d		26.90	
11	-		-	-	r at Zero Flow ^{9, a}			
11 	10	Isentro	pic Enio	ciency		00.50		%0
For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrate Consult CAGI website for a list of participants in the third party verification program: www.cagi.org NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this da c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Volume Flow Rate Specific Energy Main fit ³ /min % % %								
NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this date. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy at specified conditions Volume Flow Rate m³/min ft³ / min % %	11		Specific Power (kW/100 ACFM)	35.00 30.00 25.00 20.00 15.00 10.00 0.0 35.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, +	Capacity (ACFM) ual representation of the data in - 5kW/100acfm increments if nece	Section 8	420.0 455.0 490.0
Volume Flow Rate at specified conditions Specific Energy Volume Flow Rate Zero Flow Power m³/min ft³ / min % %	For mode		ested in th	35.00 30.00 25.00 20.00 15.00 10.00 0.0 35. N ne CAGI Perfe	C Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, 4 X-Axis Scale, 0 ormance Verification Pr	Capacity (ACFM) ual representation of the data in 5kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve	Section 8 ssary above 35 rified by the thi	
	For mode Consult C. NOTES:	AGI website a. M A b. T c. N n d. T	ested in the for a lis Measured a ACFM is a The operati No Load Pen nanufactur Folerance i	35.00 30.00 25.00 20.00 15.00 10.00 0.0 35. N The CAGI Perfet t of participan at the discharge ctual cubic feet ing pressure at 1 were runy state 'n is specified in IS	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, 4 X-Axis Scale, 0 prmance Verification Pr ts in the third party veri terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on t SO 1217, Annex E, as sho	apacity (ACFM) ual representation of the data in 5 kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve ification program: npressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no the test report. own in table below:	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 12 ion (Item 8) were load power equ	rd party administrato 17, Annex E; e measured for this data
	For mode Consult C. NOTES:	AGI website a. M A b. T c. N d. T N Vo'	ested in the for a lis Measured a ACFM is a CFM is a CFM is a CFM is a CFM is a Comparison of the the state of the state o	35.00 30.00 25.00 20.00 15.00 10.00 0.0 35. N The CAGI Performing the discharge ctual cubic feet ing pressure at v were in accorr ter may state "n is specified in IS the terms "power	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, - X-Axis Scale, 0 pormance Verification Pr ts in the third party veri- terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on t SO 1217, Annex E, as shk " and "energy" are synon	Capacity (ACFM) ual representation of the data in 5 kW/100acfm increments if nece 10 25% over maximum capacity rogram, these items are ve ification program: apressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no the test report. Swn in table below: ymous for purposes of this of Specific Energy	Section 8 ssary above 35 rified by the thi www.cagi.org nee with ISO 12 ion (Item 8) were load power equ document.	rd party administrato 17, Annex E; e measured for this data

ROT 031.1 12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

+/- 6

+/- 5

+/- 4

0.5 0.5 to 1.5

1.5 to 15

Above 15

17.6 to 53

53 to 529.7

Above 529.7

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		MO	DEL DATA - FO	OR COMPRESSE	D AIR			
1	Manufacturer:	FS-Cu	ırtis					
	Model Numbe	er: NxV7	5-150		Date:	03/03/21		
2	X Air-ce	ooled	Water-cooled		Type:	Screw		
					# of Stages:	1		
3*	Full Load Ope	rating Pressu	ıre ^b	150		psig		
4	Drive Motor N	Jominal Rati	ng	100		hp		
5	Drive Motor N		Ť	95.4		percent		
6			g (if applicable)	3		hp		
7	Fan Motor No		ency	89.5	Sp	percent ecific Power		
	Input Powe	er (kW)		Capacity (acfm) ^{a,d}	-	V/100 acfm) ^d		
	99.2			411.3		24.12		
8*	85.4			361.9	23.60			
	71.3			302.4		.58		
-	59.6	59.6 242.0 24.63 35.1 117.4 29.90						
9*	Jotal Package		r at Zero Flow ^{c, d}	0.0	29	.90 kW		
10	Isentropic Efficiency 67.00 %							
	Power ACFM)	30.00						
11	Specific Power (kW/100 ACFM)	25.00						
		20.00 15.00 10.00 0.0 35	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, - X-Axis Scale, (175.0 210.0 245.0 280.0 Capacity (ACFM) wal representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve	ssary above 35			
*For mode	Is that are tested in t AGI website for a list a. Measured ACFM is a b. The operat c. No Load F manufactu d. Tolerance	20.00 15.00 10.00 0.0 35 N The CAGI Performs the CAGI Performs the CAGI Performs the chicknarge actual cubic feet ting pressure at the discharge actual cubic feet ting pressure at the specified in IS the terms "power w Rate	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, - X-Axis Scale, 0 prmance Verification Pr ts in the third party ver terminal point of the cor per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on a SO 1217, Annex E, as sh	Capacity (ACFM) ual representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan titions. 8) and Electrical Consumpti nex E, if measurement of no the test report.	Section 8 ssary above 35 rified by the third j www.cagi.org nee with ISO 1217, . ion (Item 8) were m load power equals	party administrate Annex E; easured for this data		

	at spe	cified conditions	volume Flow Rate	Consumption	Power
	$\underline{m^3 / min}$	<u>ft³ / min</u>	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
ROT 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

0.5 to 1.5

1.5 to 15

17.6 to 53

53 to 529.7

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

			MC	DDEL DATA - FO	OR COMPRESSE	D AIR			
1	Manufa	cturer:	FS-C	Curtis					
	Model N	Number	: NxV	90-100		Date:	03/03/21		
2	X	Air-co	oled	Water-cooled		Туре:	Screw		
						# of Stages:	1		
3*	Full Loa	ıd Oper	ating Pres	sure	100	" of Suges.	psig ^b		
4			ominal Ra		125		hp		
5	Drive M	lotor N	ominal Ef	ficiency	95.4		percent		
6	Fan Mot	tor Non	ninal Ratii	ng (if applicable)	3		hp		
7	Fan Mot	tor Nor	ninal Effic	iency	89.5		percent Specific Power		
	Input	Power	(kW)		Capacity (acfm) ^{a,d}		kW/100 acfm) ^d		
		121.0			567.3	21.33 20.46			
8*		98.8			483.0				
		78.4			388.2		20.20		
		59.4			298.5		19.90		
		26.6		c, d	120.7		22.04		
9*		-	-	er at Zero Flow ^{C, U}	0.0		kW		
10	Isentrop	nc Effic	elency		65.20		%		
11		Specific Power (kW/100 ACFM)	30.00						
				(Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, (0 240.0 280.0 320.0 360.0 4 Capacity (ACFM) ual representation of the data in 5 KW/100acfm increments if nece to 25% over maximum capacity	Section 8 ssary above 35			
	CAGI website a. Ma AC b. Th c. No ma d. To	for a list easured a CFM is ac b coperati b Load Po anufactur olerance is	t of participa tt the discharge ctual cubic fe ng pressure a ower. In acco er may state s specified in	ants in the third party ver ge terminal point of the cor et per minute at inlet cond it which the Capacity (Item ordance with ISO 1217, An "not significant" or "0" on ISO 1217, Annex E, as sh	npressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no the test report. own in table below:	www.cagi.org nce with ISO 12 ion (Item 8) were load power equ	17, Annex E; e measured for this data		
	NC	JIE: Th	e terms "pow	er and energy are synor	nymous for purposes of this of	locument.			
		ume Flow cified con		Volume Flow Rate	Specific Energy Consumption	Zero Flow Power			
	m ³ / min		/ min	%	%	%			
	Below 0.5	Belo	ow 17.6	+/- 7	+/- 8				

Above 529.7 ROT 031.1 Above 15 +/- 4 +/- 5

+/- 7

+/- 6

+/- 10%

+/- 6

+/- 5

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

			MOI	DEL DATA - FC	OR COMPRESSE	D AIR		
1	Manu	facturer:	FS-Cu	ırtis				
	Mode	l Numbe	r: NxV9	0-125		Date:	03/03/21	
2	X	Air-co	poled	Water-cooled		Туре:	Screw	
						# of Stages:	1	
3*	Full L	oad Ope	rating Pressu	ure ^b	125		psig ^b	
4	Drive	Motor N	Iominal Rati	ng	125		hp	
5	Drive	Motor N	lominal Effic	ciency	95.4		percent	
6				g (if applicable)	3		hp	
7			minal Efficie	ency	89.5		percent Specific Power	
	Inp	out Powe	r (kW)		Capacity (acfm) ^{a,d}		kW/100 acfm) ^d	
		113.0)		505.5		22.35 21.82	
8*		94.5			433.1			
		79.0			361.9		21.83	
	-	62.7 283.4 22.12 22.2 110.7 26.00						
		32.2		c, d	119.7		26.90	
9* 10		Package opic Effi	-	r at Zero Flow ^{c, u}	0.0 67.40		<u>kW</u> %	
			40.00					
11 *For mod	els that are	Specific Power ((WV100 ACFN)	35.00 30.00 25.00 20.00 15.00 10.00 0.0 40. N	C Note: Graph is only a vis Iote: Y-Axis Scale, 10 to 35, 4 X-Axis Scale, 0	0.0 240.0 280.0 320.0 360. apacity (ACFM) ual representation of the data in 5 kW/100acfm increments if nece to 25% over maximum capacity cogram, these items are ve	Section 8 ssary above 35		
*For mod	CAGI websi a. b. c. d.	tested in t ite for a lis ACFM is a The operat No Load P manufactu Tolerance NOTE: TI	35.00 30.00 25.00 20.00 15.00 10.00 0.0 40. N he CAGI Perfet st of participan at the discharge totual cubic feet ing pressure at ' 'ower. In accord rer may state ''n is specified in IS he terms "power	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, 4 X-Axis Scale, 0 prmance Verification Pr ts in the third party ver terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on 1 SO 1217, Annex E, as sho	Capacity (ACFM) ual representation of the data in 5 kW/100acfm increments if nece 10 25% over maximum capacity cogram, these items are ve ification program: npressor package in accordant tions. 8) and Electrical Consumptinex E, if measurement of no the test report. Sown in table below: hymous for purposes of this of	Section 8 ssary above 35 rified by the thi www.cagi.org nce with ISO 121 ion (Item 8) were load power equa document.	rd party administrate 17, Annex E; e measured for this dat	
*For mod Consult (NOTES:	CAGI websi a. b. c. d.	tested in t ite for a lis Measured i ACFM is a The operat No Load P manufactu Tolerance NOTE: TI olume Flov pecified co	35.00 30.00 25.00 20.00 15.00 10.00 0.0 40. N he CAGI Perfet st of participan at the discharge tetual cubic feet ing pressure at " ne accorr rer may state "n is specified in IS he terms "power	Note: Graph is only a vis lote: Y-Axis Scale, 10 to 35, 4 X-Axis Scale, 0 prmance Verification Pr ts in the third party ver terminal point of the con per minute at inlet condi which the Capacity (Item dance with ISO 1217, An ot significant" or "0" on 1 SO 1217, Annex E, as sho	Capacity (ACFM) ual representation of the data in 5 kW/100acfm increments if nece to 25% over maximum capacity cogram, these items are ve ification program: npressor package in accordant tions. 8) and Electrical Consumpti nex E, if measurement of no the test report. bown in table below:	Section 8 ssary above 35 rified by the thi www.cagi.org nce with ISO 121 ion (Item 8) were load power equa	rd party administrate 17, Annex E; e measured for this dat	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data

+/- 7

+/- 6

+/- 5

+/- 10%

+/- 6

+/- 5

+/- 4

0.5 0.5 to 1.5

1.5 to 15

Above 15

ROT 031.1

17.6 to 53

53 to 529.7

Above 529.7

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 2 3* 4 5 6	Model Number: X Air-cooled Full Load Operating Drive Motor Nomin		150	Date: Type: # of Stages:	03/03/21 Screw 1
3* 4 5	X Air-cooled Full Load Operating Drive Motor Nomin	Water-cooled Pressure ^b		Type:	Screw 1
3* 4 5	Full Load Operating Drive Motor Nomin	Pressure ^b			1
4 5	Drive Motor Nomin	Pressure		# of Stages:	
4 5	Drive Motor Nomin	Pressure		" of Suges.	
5	Drive Motor Nomin				, b psig
		ai Raing	125		hp
6	Drive Motor Nomin	al Efficiency	95.4		percent
	Fan Motor Nominal	Rating (if applicable)	3		hp
7	Fan Motor Nominal	Efficiency	89.5	G	percent
	Input Power (kW)	Capacity (acfm) ^{a,d}	-	ecific Power V/100 acfm) ^d
	113.0		456.5		.75
8*	95.2		393.4	24	.20
	79.0		333.1	23	.72
	63.0		264.0	23	.86
	35.1	D (7 El c, d	117.4	29	.90
9*		Power at Zero Flow	0.0		kW
10	Isentropic Efficiency	У	67.70		%
11	30.00 25.00 20.00 20.00 15.00 10.00	0.0 40.0 80.0 120.0 160 Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35,	.0 200.0 240.0 280.0 32 Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece		440.0 480.0

M

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / \min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

Above 529.7

+/- 4

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 5

Above 15

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1			IODEL DATA - FO			
	Manufactur	er: FS	-Curtis			
	Model Nun	iber: Nx	V110-100		Date:	03/03/21
2	X Ai	r-cooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load C	perating Pr	essure	100		psig ^b
4	Drive Moto	r Nominal I	Rating	150		hp
5	Drive Moto	r Nominal l	Efficiency	96.2		percent
6	Fan Motor	Nominal Ra	ting (if applicable)	4		hp
7	Fan Motor	Nominal Ef	ficiency	86.5	Sr	percent pecific Power
	Input Po	wer (kW)		Capacity (acfm) ^{a,d}	-	W/100 acfm) ^d
	14	1.0		689.0		0.46
8*	11	4.0		599.1	19	9.03
	9	4.0		507.7	18.51	
	7:	5.0		408.8	18	8.35
	3	9.0		205.4	18	8.99
9*	Total Packa	ge Input Po	ower at Zero Flow ^{c, d}	0.0		kW
10	Isentropic I	fficiency		70.20		%
11	Specific Power	25.00 25.00 20.00				I
		15.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35,	.0 300.0 350.0 400.0 450.0 5 Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece	Section 8	0.0 700.0 750.0
	AGI website for a. Measu ACFM b. The op c. No Loo manuf d. Tolera	in the CAGI I a list of partic red at the disch is actual cubic erating pressu ad Power. In a dPower. In a the of the specified	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 Performance Verification P ipants in the third party ver marge terminal point of the con c feet per minute at inlet cond e at which the Capacity (Item ccordance with ISO 1217, Ar te "not significant" or "0" on l in ISO 1217, Annex E, as sh	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. 1 8) and Electrical Consumpti mex E, if measurement of no the test report. wown in table below:	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals	party administrato Annex E; neasured for this dat
Consult C NOTES:	AGI website for a. Measu ACFM b. The op c. No Loo manuf, d. Tolera NOTE	10.00 0.0 in the CAGI I a list of partic is actual cubic erating pressu ad Power. In a acturer may sta nee is specified : The terms "p	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Performance Verification P ipants in the third party ver marge terminal point of the cor c feet per minute at inlet cond re at which the Capacity (Item coordance with ISO 1217, Ar te "not significant" or "0" on	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rrogram, these items are ve rification program: mpressor package in accordan itions. 8) and Electrical Consumpti unex E, if measurement of no the test report. Nown in table below: nymous for purposes of this of	Section 8 ssary above 35 rified by the third www.cagi.org nce with ISO 1217, ion (Item 8) were n load power equals locument.	party administrato Annex E; neasured for this dat
Consult C NOTES:	AGI website for a. Measu ACFM b. The op c. No Lo manufi d. Tolera NOTE Volume at specifie	in the CAGI 1 a list of partic red at the discl is actual cubic erating pressu ad Power. In a dPower. In a cucturer may sta nece is specified : The terms "p Flow Rate d conditions	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Performance Verification P ipants in the third party ver marge terminal point of the cor f eet per minute at inlet cond re at which the Capacity (Item coordance with ISO 1217, Ar te "not significant" or "0" on I in ISO 1217, Annex E, as sh ower" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. a 8) and Electrical Consumpti intex E, if measurement of no the test report. iown in table below: nymous for purposes of this consumption	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals locument.	party administrato Annex E; neasured for this dat
Consult C NOTES:	AGI website for a. Measu ACFM b. The op c. No Lo manufi d. Tolera NOTE Volume	10.00 0.0 in the CAGI I a list of partic red at the disch is actual cubic erating pressu ad Power. In a tecturer may stat acturer may stat acturer may stat acturer may stat the terms "p Flow Rate a conditions ft ³ / min	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, Terformance Verification P ipants in the third party ver arge terminal point of the con the feet per minute at inlet cond te at which the Capacity (Iten ccordance with ISO 1217, Ar te "not significant" or "0" on 1 in ISO 1217, Annex E, as sh ower" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rrogram, these items are ve rification program: mpressor package in accordan itions. 8) and Electrical Consumpti nex E, if measurement of no the test report. Nown in table below: nymous for purposes of this of Specific Energy Consumption %	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, toon (Item 8) were m load power equals document.	party administrato Annex E; neasured for this dat
Consult C NOTES:	AGI website for a. Measu ACFM b. The op c. No Lo manufi d. Tolera NOTE Volume at specified <u>m³/min</u>	in the CAGI 1 a list of partic red at the discl is actual cubic erating pressu ad Power. In a dPower. In a cucturer may sta nece is specified : The terms "p Flow Rate d conditions	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, Performance Verification P ipants in the third party ver marge terminal point of the cor f eet per minute at inlet cond re at which the Capacity (Item coordance with ISO 1217, Ar te "not significant" or "0" on I in ISO 1217, Annex E, as sh ower" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve rification program: mpressor package in accordan itions. a 8) and Electrical Consumpti intex E, if measurement of no the test report. iown in table below: nymous for purposes of this consumption	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals locument.	party administrato Annex E; neasured for this dat
Consult C NOTES:	AGI website for a. Measu ACFM b. The op c. No Lo manufi d. Tolera NOTE Volume at specified m ³ /min Below	10.00 0.0 in the CAGI I a list of partic red at the disch is actual cubic erating pressu ad Power. In a tecturer may stat acturer may stat acturer may stat acturer may stat the terms "p Flow Rate a conditions ft ³ / min	Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, Terformance Verification P ipants in the third party ver arge terminal point of the con the feet per minute at inlet cond te at which the Capacity (Iten ccordance with ISO 1217, Ar te "not significant" or "0" on 1 in ISO 1217, Annex E, as sh ower" and "energy" are synor Volume Flow Rate	Capacity (ACFM) sual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rrogram, these items are ve rification program: mpressor package in accordan itions. 8) and Electrical Consumpti nex E, if measurement of no the test report. Nown in table below: nymous for purposes of this of Specific Energy Consumption %	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals locument.	party administrato Annex E; neasured for this dat

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	1	MC	DEL DATA - F	UK UUMI KESSEI) AIK	
1	Manufacturer	FS-C	Curtis			
	Model Numbe	er: NxV	110-125		Date:	03/03/21
2	X Air-c	ooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	erating Pres	sure	125	in of bluggeti	psig ^b
4	Drive Motor N	Nominal Ra	ting	150		hp
5	Drive Motor N	Nominal Eff	ĩciency	96.2		percent
6	Fan Motor No	ominal Ratir	ng (if applicable)	4		hp
7	Fan Motor No	minal Effic	iency	86.5		percent
	Input Powe	er (kW)		Capacity (acfm) ^{a,d}	-	becific Power W/100 acfm) ^d
	137.	0		624.1		1.95
8*	116.	116.0 542.6 21.38		1.38		
	95.0)		456.4	20	0.82
	75.0)		366.5	20	0.46
	41.0		c, d	200.0	20	0.50
9*		•	er at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Eff	iciency		71.70		%
11	Specific Power (kW/100 ACFM)	25.00				
		0.0		250.0 300.0 350.0 400.0 450. Capacity (ACFM)		0.0 650.0 700.0
*For mode	els that are tested in		Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale,		Section 8 ssary above 35	
Consult C NOTES:	CAGI website for a li : a. Measured ACFM is b. The opera c. No Load 1 manufactu d. Tolerance	the CAGI Per st of participa at the discharq actual cubic fe ting pressure a Power. In accco rer may state ' is specified in	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale, formance Verification I ints in the third party ve ge terminal point of the co et per minute at inlet cond t which the Capacity (Iter ordance with ISO 1217, A 'not significant' or "0" on ISO 1217, Annex E, as si	Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are verification program: mpressor package in accordan litions. n 8) and Electrical Consumptinnex E, if measurement of no the test report.	Section 8 ssary above 35 rified by the third <u>www.cagi.org</u> nee with ISO 1217, son (Item 8) were n load power equals locument.	party administrato Annex E; neasured for this data
Consult C NOTES:	CAGI website for a li : a. Measured ACFM is b. The opera c. No Load 1 manufactu d. Tolerance	the CAGI Per st of participa at the discharg actual cubic fe ting pressure a Power. In accc urer may state ' is specified in 'he terms "pow w Rate	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale, formance Verification I ints in the third party ve ge terminal point of the co et per minute at inlet cond t which the Capacity (Iter ordance with ISO 1217, A 'not significant' or "0" on ISO 1217, Annex E, as si	Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are verification program: mpressor package in accordanditions. n 8) and Electrical Consumptines, if measurement of no the test report. hown in table below:	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, son (Item 8) were n load power equals	party administrato Annex E; neasured for this data
Consult C	CAGI website for a li a. Measured ACFM is b. The opera c. No Load I manufact d. Tolerance NOTE: T Volume Flo at specified co m ³ /min fi Below	the CAGI Per st of participa at the discharg actual cubic fe ting pressure a Power. In accc urer may state ' is specified in 'he terms "pow w Rate	Note: Graph is only a v Note: Y-Axis Scale, 10 to 35, X-Axis Scale, formance Verification I ints in the third party ve ge terminal point of the cc et per minute at inlet cond t which the Capacity (Iter rodance with ISO 1217, A 'not significant'' or "0" on ISO 1217, Annex E, as si er" and "energy" are sync	Capacity (ACFM) isual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. n 8) and Electrical Consumpt nnex E, if measurement of no the test report. hown in table below: nymous for purposes of this of Specific Energy	Section 8 ssary above 35 rified by the third www.cagi.org nee with ISO 1217, ion (Item 8) were n load power equals locument.	party administrato Annex E; neasured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

1.5 to 15

Above 15

ROT 031.1

53 to 529.7

Above 529.7

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 Manufacturer: FS-Curtis 2 Model Number: NxV110-150 Date: 03/03/21 2 Image:	2 Model Number: NxV110-150 Date: 03/03/21 2 X Air-cooled Water-cooled Type: Screw # of Stages: 1 3* Full Load Operating Pressure ^b 150 psig ^b 4 Drive Motor Nominal Rating 150 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 19.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 				OR COMPRESSEI		
2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure 150 psig 1 3* Full Load Operating Pressure 150 psig 1 4 Drive Motor Nominal Rating 150 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow 68.20 % 10 Isentropic Efficiency 68.20 % 11 500 100 1500 200 200 500 600 600 600 10 Isentropic Efficiency 68.20 % 500 <td>2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure^b 150 psig^b 4 Drive Motor Nominal Rating 150 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* Input Power (kW) Capacity (acfm)^{a,d} (kW/100 acfm)^d 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c,d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 V State slade, 100.3500.400.4500.5000.5000.6000.6000 600.0 10 Isentropic Efficiency 0.0 kW 10 11 V State, 100.355.45.5</td> <td>1</td> <td>Manufacturer: FS-</td> <td>Curtis</td> <td></td> <td></td> <td></td>	2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure ^b 150 psig ^b 4 Drive Motor Nominal Rating 150 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* Input Power (kW) Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c,d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 V State slade, 100.3500.400.4500.5000.5000.6000.6000 600.0 10 Isentropic Efficiency 0.0 kW 10 11 V State, 100.355.45.5	1	Manufacturer: FS-	Curtis			
11	11 Intercond <		Model Number: NxV	/110-150		Date:	03/03/21
3^* Full Load Operating Pressure150psig ^b 4Drive Motor Nominal Rating150hp5Drive Motor Nominal Efficiency96.2percent6Fan Motor Nominal Efficiency86.5percent7Fan Motor Nominal Efficiency86.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8*116.0505.622.9494.0418.622.4675.0283.026.5048.0175.027.439*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency68.20%40.040.0175.027.439*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency90.050.050.050.020.030.030.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.0	3^* Full Load Operating Pressure150psige4Drive Motor Nominal Rating150hp5Drive Motor Nominal Efficiency96.2percent6Fan Motor Nominal Efficiency86.5percent7Fan Motor Nominal Efficiency86.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power139.0574.024.228*116.0505.622.9494.04118.622.4675.0283.026.5048.0175.027.439*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency68.20%Net: Y-Atti Sed.1 (bio 3.5), 500 (bio 3.5), 500 (bio 0.5), 500	2	X Air-cooled	Water-cooled		Type:	Screw
3^* Full Load Operating Pressure150psig ^b 4Drive Motor Nominal Rating150hp5Drive Motor Nominal Efficiency96.2percent6Fan Motor Nominal Efficiency86.5percent7Fan Motor Nominal Efficiency86.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} (kW/100 acfm) ^d 8*116.0505.622.9494.0418.622.4675.0283.026.5048.0175.027.439*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency68.20%40.040.0175.027.439*Total Package Input Power at Zero Flow ^{c, d} 0.0kW10Isentropic Efficiency90.050.050.050.020.030.030.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.09.050.050.050.0	3^* Full Load Operating Pressure150psige4Drive Motor Nominal Rating150hp5Drive Motor Nominal Efficiency96.2percent6Fan Motor Nominal Efficiency86.5percent7Fan Motor Nominal Efficiency86.5percent8*Input Power (kW)Capacity (acfm) ^{a,d} Specific Power139.0574.024.228*116.0505.622.9494.04118.622.4675.0283.026.5048.0175.027.439*Total Package Input Power at Zero Flow c, d0.0kW10Isentropic Efficiency68.20%Net: Y-Atti Sed.1 (bio 3.5), 500 (bio 3.5), 500 (bio 0.5), 500					# of Stages:	1
5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 86.5 percent 7 Fan Motor Nominal Efficiency 86.5 percent 8* Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 90 50.0 100.0 500.000.0 500.000.0 500.000.0 10 Isentropic Efficiency 68.20 % % % 11 15.00 10.00 1500 25.00 25.00 50.0 60.0 650.0 10 Isentropic Efficiency 68.20 % % % % % 11 10.00 15.00 10.00 150.0 25.00 25.00	5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Rating (if applicable) 4 hp 7 Fan Motor Nominal Efficiency 86.5 percent 8# Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8# 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 1000 1500 20.0 2500 2500 2500 66.20 20.0 1000 1	3*	Full Load Operating Pres	ssure		in of Stagest	
6 Fan Motor Nominal Rating (if applicable) 4 hp 7 Fan Motor Nominal Efficiency 86.5 percent 7 Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 10 100 100 100 100 100 100 100 11 10 100 100 100 25.00 100 50.0 60.0 50.0 60.0 50.0 10 100 100 100 20.00 25.00 100.0 50.0 60.0 50.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 </td <td>6 Fan Motor Nominal Rating (if applicable) 4 hp 7 Fan Motor Nominal Efficiency 86.5 percent Input Power (kW) Capacity (acfm)^{a,d} Specific Power (kW/100 acfm)^d 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 10 Isentropic Efficiency 68.20 % Note: Craph is 00 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 Note: Craph is 00 a 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 Note: Y-Axis Stale, 10 0 35, * 51 W/100affin increases of fraceoury above 35 X-Axis Stale, 0 to 25% over maximum expacty</td> <td>4</td> <td>Drive Motor Nominal Ra</td> <td>ating</td> <td>150</td> <td></td> <td></td>	6 Fan Motor Nominal Rating (if applicable) 4 hp 7 Fan Motor Nominal Efficiency 86.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 10 Isentropic Efficiency 68.20 % Note: Craph is 00 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 Note: Craph is 00 a 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 Note: Y-Axis Stale, 10 0 35, * 51 W/100affin increases of fraceoury above 35 X-Axis Stale, 0 to 25% over maximum expacty	4	Drive Motor Nominal Ra	ating	150		
7 Fan Motor Nominal Efficiency 86.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 $\sqrt[40.00]{9000}^{35.00}$ $\sqrt[25.00]{25.00}^{5.00}$ $\sqrt[25.00]{25.00}^{5.00}$ $\sqrt[30.00]{25.00}^{5.00}$ $\sqrt[30.00]{25.00}^{5.00}^{5.00}$ $\sqrt[30.00]{25.00}^{5.00}^{5.00}$	7 Fan Motor Nominal Efficiency 86.5 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c,d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 1000 35.00 25.00 % 11 1000 1000 1500 2000 25.00 11 <td>5</td> <td>Drive Motor Nominal Ef</td> <td>ficiency</td> <td>96.2</td> <td></td> <td>percent</td>	5	Drive Motor Nominal Ef	ficiency	96.2		percent
$11 \qquad 11 \qquad \qquad$	Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 $\sqrt[40.00]{0.00}^{30.00}_{0.00}^{50.0} \frac{20.00}{20.00}^{20.00} \frac{20.00}{20.00}^{30.00} \frac{30.00}{40.00}^{40.00} \frac{450.0}{50.0} \frac{50.00}{60.00}^{60.00} \frac{650.0}{650.0}$ Capacity (ACFM) Note: Y-Axis Scale, 10 to 35, +5 kW/100kmf increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity	6	Fan Motor Nominal Rati	ng (if applicable)	4		hp
11 Input Power (kW) Capacity (acfm) ^{3,d} (kW/100 acfm) ^d (kW/100 acfm)	Input Power (kW) Capacity (acfm) ^{4,d} (kW/100 acfm) ^d 139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 10 Isentropic Efficiency 68.20 % Not: "At a scale, 10 to 35, *5 kW/100 acfm increments if accessary above 35 Not: "Y-Axis Scale, 10 to 35, *5 kW/100 acfm increments if accessary above 35 X-Axis Scale, 10 to 25% over maximum capacity	7	Fan Motor Nominal Effi	ciency	86.5		
$11 \qquad 11 $	139.0 574.0 24.22 8* 116.0 505.6 22.94 94.0 418.6 22.46 75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow c, d 0.0 kW 10 Isentropic Efficiency 68.20 % 11 v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} 11 v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} 11 v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} 11 v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} v_{000}^{000} 10 Isentropic Efficiency v_{000}^{000}		Input Power (kW)		Capacity (acfm) ^{a,d}	-	
11	94.0418.622.4675.0283.026.5048.0175.027.439*Total Package Input Power at Zero Flow0.0kW10Isentropic Efficiency68.20% $\begin{pmatrix} 40.00 \\ 35.00 \\ 25.00 \\ 25.00 \\ 15.00 \\ 10.00 \\ 0.0 \\ 50.0 \\ 10.00 \\ 10.00 \\ 50.0 \\ 10.00 \\ 10.00 \\ 10.00 \\ 50.0 \\ 10.00 \\ 1$		139.0				
$11 \qquad \begin{array}{ c c c c c c } \hline 75.0 & 283.0 & 26.50 \\ \hline 48.0 & 175.0 & 27.43 \\ \hline 9^* & Total Package Input Power at Zero Flow c, d & 0.0 & kW \\ \hline 10 & Isentropic Efficiency & 68.20 & \% \\ \hline 10 & Isentropic ficiency & 68.20 & \% \\ \hline 000 & 35.00 & 30.00 & 35.00 & 40.00 & 450.0 & 50.0 & 600.0 & 65.00 \\ \hline 000 & 30.00 & 15.00 & 100.0 & 150.0 & 200.0 & 250.0 & 30.00 & 450.0 & 500.0 & 650.0 \\ \hline 1000 & 0.0 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 50.0 & 100.0 & 150.0 & 200.0 & 250.0 & 300.0 & 350.0 & 400.0 & 450.0 & 500.0 & 650.0 \\ \hline 000 & 0$	75.0 283.0 26.50 48.0 175.0 27.43 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 %	8*			505.6	2	2.94
48.0175.027.439*Total Package Input Power at Zero Flow $^{c, d}$ 0.0kW10Isentropic Efficiency68.20%111111Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, *5KW/100acfm increments if necessary above 35	48.0 175.0 27.43 9* Total Package Input Power at Zero Flow 0.0 kW 10 Isentropic Efficiency 68.20 % 10 Isentropic Efficiency 68.20 % 11 11 11 10 10 10 10 10 11 11 10 <		94.0		418.6	2	2.46
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 40.00 35.00 30.00 25.00 20.00 10.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 20.00 25.00 25.00 25.00 20.00 25.00	9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 68.20 % 11 		75.0		283.0	2	6.50
$\frac{9^{*}}{10} \text{Isentropic Efficiency} \qquad 68.20 \qquad \%$ $10 \text{Isentropic Efficiency} \qquad 68.20 \qquad \%$ $11 \left[11 0 0 0 0 0 0 0 0 0 $	9* Total Package input Power at Zero Flow 0.0 RW 10 Isentropic Efficiency 68.20 %		48.0		175.0	2	7.43
10 Intercept Entretienty 70 10 Intercept Entretienty 70 11 Intercept Entretienty 70 11 Intercept Entretienty 70 10 Intercept Ent	11 11 11 11 11 11 11 11 11 11	9*	Total Package Input Pow	ver at Zero Flow ^{c, d}	0.0		kW
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1	11 11 11 11 11 11 11 11 11 11	10	Isentropic Efficiency		68.20		%
	X-Axis Scale, 0 to 25% over maximum capacity or models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrator	11	25.00 25.00 25.00 15.00 10.00		Capacity (ACFM)		0 600.0 650.0
						ssary above 35	
 NOTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. 		onsult C NOTES:	 CAGI website for a list of particip a. Measured at the dischar ACFM is actual cubic f b. The operating pressure c. No Load Power. In acc manufacturer may state d. Tolerance is specified in 	erformance Verification P ants in the third party ver rege terminal point of the con eet per minute at inlet cond at which the Capacity (Item rordance with ISO 1217, Ar "not significant" or "0" on n ISO 1217, Annex E, as sh	ification program: npressor package in accordan titons. 8) and Electrical Consumpt: nex E, if measurement of no the test report. own in table below:	www.cagi.org nce with ISO 1217 ion (Item 8) were r load power equals	, Annex E; neasured for this data
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate at specified conditions Volume Flow Rate Volume Flow Rate Volume Flow Rate Consumption Power	Volume Flow Rate Specific Energy Zero Flow at specified conditions Volume Flow Rate Consumption Power	onsult C NOTES:	CAGI website for a list of particip a. Measured at the dischar ACFM is actual cubic f b. The operating pressure c. No Load Power. In acc manufacturer may state d. Tolerance is specified in NOTE: The terms "pow Volume Flow Rate at specified conditions	erformance Verification P ants in the third party ver ge terminal point of the cor eet per minute at inlet cond at which the Capacity (Iterr 'ordance with ISO 1217, An "not significant" or "0" on n ISO 1217, Annex E, as sh wer" and "energy" are synor Volume Flow Rate	ification program: npressor package in accordantions. 8) and Electrical Consumptinex E, if measurement of no the test report. own in table below: hymous for purposes of this of Specific Energy Consumption	www.cagi.org nce with ISO 1217 ion (Item 8) were r load power equals locument. <u>Ive Load</u> Zero Flow <u>Power</u>	, Annex E; neasured for this data
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Zero Flow	Volume Flow Rate at specified conditions Specific Energy Consumption Zero Flow Power $\underline{m^3 / \min}$ $\underline{ft^3 / \min}$ % %	onsult C NOTES:	 CAGI website for a list of particip a. Measured at the dischar ACFM is actual cubic f b. The operating pressure c. No Load Power. In accmanufacturer may state d. Tolerance is specified in NOTE: The terms "pow Volume Flow Rate at specified conditions m³/min 	erformance Verification P ants in the third party ver ge terminal point of the cor eet per minute at inlet cond at which the Capacity (Iterr 'ordance with ISO 1217, An "not significant" or "0" on n ISO 1217, Annex E, as sh wer" and "energy" are synor Volume Flow Rate	ification program: npressor package in accordantions. 8) and Electrical Consumptinex E, if measurement of no the test report. own in table below: hymous for purposes of this of Specific Energy Consumption	www.cagi.org nce with ISO 1217 ion (Item 8) were r load power equals locument. <u>Ive Load</u> Zero Flow <u>Power</u>	, Annex E; neasured for this data

Compr

M

		ume Flow Rate cified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	$\underline{m^3 / min}$	ft ³ / min	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
Г 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

2 3* 4 5 6 7 8* 9*	Manufacturer: Model Number X Air-co Full Load Oper Drive Motor N Drive Motor Nor Fan Motor Nor Fan Motor Nor Fan Motor Nor Input Powe 211.0 177.0 150.0 120.0 64.0 Total Package	ooled rating Press fominal Rati ninal Ratin ninal Effici r (kW)	60-100 Water-cooled ure ^b ing iciency g (if applicable)	100 200 96.2 6 89.5 Capacity (acfm) ^{a,d} 1030	(k	03/03/21 Screw 1 psig ^b hp percent hp percent pecific Power W/100 acfm) ^d
2 3* 4 5 6 7 8* 9*	X Air-color Full Load Ope Drive Motor N Drive Motor No Notor No Fan Motor No Input Powe 211.0 177.0 150.0 120.0 64.0 64.0	ooled rating Press fominal Rati ninal Ratin ninal Effici r (kW)	Water-cooled ure ^b ing iciency g (if applicable)	100 200 96.2 6 89.5 Capacity (acfm) ^{a,d}	Type: # of Stages: Sj (k	Screw 1 psig ^b hp percent hp percent pecific Power W/100 acfm) ^d
3* 4 5 6 7 8* 9*	Full Load Ope Drive Motor N Drive Motor Nor Fan Motor Nor Input Powe 211.0 177.0 150.0 120.0 64.0	rating Press ominal Rat ominal Eff ninal Ratin ninal Effici r (kW)	ure ^b ing iciency g (if applicable)	100 200 96.2 6 89.5 Capacity (acfm) ^{a,d}	# of Stages:	1 psig ^b hp percent hp pecific Power W/100 acfm) ^d
4 5 6 7 8*	Drive Motor N Drive Motor N Fan Motor Nor Input Powe 211.0 177.0 150.0 64.0	iominal Rat iominal Eff ninal Ratin ninal Effici r (kW)	ing iciency g (if applicable)	100 200 96.2 6 89.5 Capacity (acfm) ^{a,d}	# of Stages:	psig ^b hp percent hp percent pecific Power W/100 acfm) ^d
4 5 6 7 8*	Drive Motor N Drive Motor N Fan Motor Nor Input Powe 211.0 177.0 150.0 64.0	iominal Rat iominal Eff ninal Ratin ninal Effici r (kW)	ing iciency g (if applicable)	100 200 96.2 6 89.5 Capacity (acfm) ^{a,d}	S	hp percent percent pecific Power W/100 acfm) ^d
4 5 6 7 8*	Drive Motor N Drive Motor N Fan Motor Nor Input Powe 211.0 177.0 150.0 64.0	iominal Rat iominal Eff ninal Ratin ninal Effici r (kW)	ing iciency g (if applicable)	96.2 6 89.5 Capacity (acfm) ^{a,d}	(k	percent hp percent pecific Power W/100 acfm) ^d
6 7 8* 9*	Fan Motor Nor Fan Motor Nor Input Powe 211.0 177.0 150.0 120.0 64.0	ninal Ratin ninal Effici r (kW)	g (if applicable)	6 89.5 Capacity (acfm) ^{a,d}	(k	hp percent pecific Power W/100 acfm) ^d
7	Fan Motor Nor Input Powe 211.0 177.0 150.0 120.0 64.0	ninal Effici		89.5 Capacity (acfm) ^{a,d}	(k	percent pecific Power W/100 acfm) ^d
8*	Input Powe 211.0 177.0 150.0 120.0 64.0	r (kW)		Capacity (acfm) ^{a,d}	(k	pecific Power W/100 acfm) ^d
9*	211.0 177.0 150.0 120.0 64.0	 			(k	W/100 acfm) ^d
9*	177.0 150.0 120.0 64.0	1		1030		
9*	150.0 120.0 64.0				2	0.49
	120.0 64.0			903	19.60	
	64.0	1		768	1	9.53
				618	1	9.42
	Total Package		c, d	340	1	8.82
10			er at Zero Flow ^{e, a}	0.0		kW
	Isentropic Effi	ciency		67.90		%
11	Specific Power (kW/100 ACFM)	25.00		400 480 560 640 720 Capacity (ACFM) isual representation of the data in		60 1040 1120
	H website for a lis	ne CAGI Peri t of participa	X-Axis Scale, formance Verification I nts in the third party ve	+ 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve prification program: ompressor package in accordar	rified by the third www.cagi.org	
GI	ACFM is a b. The operat c. No Load P manufactur d. Tolerance	ctual cubic fee ing pressure at ower. In acco rer may state " is specified in	et per minute at inlet cond which the Capacity (Iter rdance with ISO 1217, A not significant" or "0" on ISO 1217, Annex E, as s	ditions. m 8) and Electrical Consumpti nnex E, if measurement of no n the test report.	on (Item 8) were i load power equal	measured for this data
Г	Volume Flow	v Rate		Specific Energy	Zero Flow	
L	at specified co	nditions	Volume Flow Rate	Consumption	Power	
	Below Bel	<u>/ min</u> ow 17.6	% +/- 7	%	%	
1	0.5			+/- 7		

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

ROT 031.1

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

			N	IODEL DATA - F	OR COMPRESSE	DAIR	
1	Manufac	cturer:	FS	-Curtis			
	Model N	Jumber	r: Ny	V160-125		Date:	03/03/21
2	X	Air-co	oled	Water-cooled		Type:	Screw
						# of Stages:	1
3*	Full Loa	d Oper	rating Pr	essure	125	ii or blages.	psig
4	Drive M		-		200		hp
5	Drive M	lotor N	ominal	Efficiency	96.2		percent
6	Fan Mot	tor Noi	ninal Ra	ting (if applicable)	6		hp
7	Fan Mot	tor Noi	ninal Ef	ficiency	89.5		percent
	Input	Power	r (kW)		Capacity (acfm) ^{a,d}		Specific Power kW/100 acfm) ^d
		218.0			965		22.59
8*		179.0 828 21.62 151.0 702 21.51		21.62			
					702		
		121.0			565		21.42
		70.0		c, d	333		21.02
9*		-	-	ower at Zero Flow ^{c, u}	0.0		kW
10	Isentrop	ic Effi	ciency		69.40		%
11		Specific Power (kW/100 ACFM)	25.00 20.00 15.00 10.00 0		400 480 560 640 Capacity (ACFM) isual representation of the data in + 55W/100acfm increments if nece	Section 8	
	AGI website	for a lis	t of partic	X-Axis Scale, Performance Verification I ipants in the third party ve	0 to 25% over maximum capacity Program, these items are ve rification program: ompressor package in accordations.	rified by the thi www.cagi.org nce with ISO 121	
NOTES:	AC b. Th c. No ma	CFM is a e operation Load Point	ing pressu ower. In a er may sta	e at which the Capacity (Iter ccordance with ISO 1217, A te "not significant" or "0" or in ISO 1217, Annex E, as s	nnex E, if measurement of no a the test report.		
NOTES:	AC b. Th c. No ma d. To	CFM is a e operation Load Poinufactur lerance i	ing pressu ower. In a er may sta is specified	ccordance with ISO 1217, A te "not significant" or "0" or in ISO 1217, Annex E, as s	nnex E, if measurement of no a the test report.	load power equ	
NOTES:	AC b. Th c. No ma d. To NC	CFM is a e operation b Load Po- nufacture lerance in DTE: The ume Flow	ing pressui ower. In a rer may sta is specified he terms "p v Rate	ccordance with ISO 1217, A te "not significant" or "0" or in ISO 1217, Annex E, as s ower" and "energy" are sync	nnex E, if measurement of no the test report. hown in table below: onymous for purposes of this of Specific Energy	load power equadocument.	
NOTES:	AC b. Th c. No ma d. To NC Volu at spec <u>m³/min</u>	CFM is a e operation b Load Poinufacture lerance in DTE: The unne Flow cified con	ing pressui ower. In a rer may sta is specified he terms "p v Rate	ccordance with ISO 1217, A te "not significant" or "0" or in ISO 1217, Annex E, as s	nnex E, if measurement of no the test report. hown in table below: nymous for purposes of this o	document.	
NOTES:	AC b. Th c. No ma d. To NC Volu at spec	CFM is a e operation b Load Po- nufacture lerance in DTE: The mme Flow pified con <u>ft³</u>	ing pressu ower. In a rer may sta is specified te terms "p v Rate nditions	ccordance with ISO 1217, A te "not significant" or "0" or in ISO 1217, Annex E, as s ower" and "energy" are sync Volume Flow Rate	nnex E, if measurement of no the test report. hown in table below: onymous for purposes of this of Specific Energy Consumption	load power equa locument. No Load / Zero Flow Power	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

ROT 031.1

0.5 to 1.5

1.5 to 15

Above 15

ROT 031.1

17.6 to 53

53 to 529.7

Above 529.7

+/- 6

+/- 5

+/- 4

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 26 09
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Screw 1 psig ^b hp percent cific Power (100 acfm) ^d 75 20 26 99 72 kW
Image: State of Stages: # of Stages: 3* Full Load Operating Pressure 150 4 Drive Motor Nominal Rating 200 5 Drive Motor Nominal Efficiency 96.2 6 Fan Motor Nominal Efficiency 96.2 7 Fan Motor Nominal Efficiency 89.5 8* Input Power (kW) Capacity (acfm) ^{a,d} (kW/ 199.0 838 23.7 8* 174.0 750 23.2 147.0 632 23.2 112.0 485 23.0 79.0 333 23.7 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 10 Isentropic Efficiency 70.40	1 psig hp percent hp percent cific Power (100 acfm) ^d 75 20 26 09 72 kW
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	psig ^b hp percent hp percent cific Power (100 acfm) ^d 75 20 26 99 72 kW
3^* Full Load Operating Pressure 150 4 Drive Motor Nominal Rating 200 5 Drive Motor Nominal Efficiency 96.2 6 Fan Motor Nominal Efficiency 89.5 7 Fan Motor Nominal Efficiency 89.5 8* Input Power (kW) Capacity (acfm) ^{a,d} (kW/ 199.0 838 23.7 11 199.0 632 23.2 11 11 11 11	hp percent hp percent cific Power (100 acfm) ^d 75 20 26 99 72 kW
5 Drive Motor Nominal Efficiency 96.2 6 Fan Motor Nominal Rating (if applicable) 6 7 Fan Motor Nominal Efficiency 89.5 (kW) Capacity (acfm) ^{a,d} (kW/ 199.0 838 23.7 8* 174.0 750 23.2 147.0 632 23.2 112.0 485 23.0 79.0 333 23.7 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 10 Isentropic Efficiency 70.40 30.00 25.00 25.00 25.00 20.00 25.00 0 0.00 25.00 11 0.00 25.00 0 0.00 25.00 0 0.00 25.00 0 0.00 20.00 10 100 100 11 100 100 100 100 100 100 100 100 100 100 100 100 100 <td>percent hp percent cific Power (100 acfm)^d 75 20 26 09 72 kW</td>	percent hp percent cific Power (100 acfm) ^d 75 20 26 09 72 kW
6 Fan Motor Nominal Rating (if applicable) 6 7 Fan Motor Nominal Efficiency 89.5 Input Power (kW) Capacity (acfm) ^{a,d} (kW/ 199.0 838 23.7 8* 174.0 750 23.2 147.0 632 23.2 112.0 485 23.0 79.0 333 23.7 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 10 Isentropic Efficiency 70.40	hp percent cific Power (100 acfm) ^d 75 20 26 26 29 72 kW
7 Fan Motor Nominal Efficiency 89.5 Input Power (kW) Capacity (acfm) ^{a,d} Spec $(kW/)$ 199.0 838 23.7 $8*$ 174.0 750 23.2 147.0 632 23.2 112.0 485 23.0 79.0 333 23.7 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 10 Isentropic Efficiency 70.40 10 Jsentropic Efficiency 70.40	percent cific Power (100 acfm) ^d 75 20 26 09 72 kW
$8* \frac{11}{11} \begin{bmatrix} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\$	cific Power (100 acfm) ^d (75) (20) (26) (26) (29) (26) (29) (20) (20) (20) (20) (20) (20) (20) (20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(100 acfm) ^d 75 20 26 09 72 kW
$8* \frac{199.0}{174.0} \frac{838}{750} \frac{23.7}{23.2}$ $8* \frac{174.0}{147.0} \frac{632}{632} \frac{23.2}{23.2}$ $112.0 \frac{485}{79.0} \frac{333}{23.7}$ $9* \frac{1}{10} \frac{1}{120} \frac{1}$	75 20 26 09 72 kW
$11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	26)9 72 kW
112.0	09 72 kW
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	72 kW
9* Total Package Input Power at Zero Flow c, d 0.0 10 Isentropic Efficiency 70.40 11 40.00 35.00 30.00 30.00 25.00 25.00 11 15.00 100 15.00 100 15.00 100 15.00 100 160 240 320 400 480 560 640 720 80	kW
$10 \qquad \text{Isentropic Efficiency} \qquad 70.40$ $11 \qquad $	
	%0
Capacity (ACFM)	800 880
Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity	
 *For models that are tested in the CAGI Performance Verification Program, these items are verified by the third pa Consult CAGI website for a list of participants in the third party verification program: www.cagi.org a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, An ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were mease. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals les manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. 	nnex E; isured for this da
Volume Flow Rate at specified conditions Specific Energy Volume Flow Rate Zero Flow Consumption 3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

	•	мо	DEL DATA - FC	OR COMPRESSE	JAIK	
1	Manufacturer:	nufacturer: FS-Curtis				
	Model Number	: NxV	85-100		Date:	03/03/2
2	X Air-co	oled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Oper	ating Press	ure ^b	100	0	psig
4	Drive Motor N	ominal Rat	ing	250		hp
5	Drive Motor N	ominal Eff	iciency	96.2		percent
6			g (if applicable)	6		hp
7	Fan Motor Nor	ninal Effic	ency	89.5		percent Specific Power
	Input Power (kW)			Capacity (acfm) ^{a,d}	(kW/100 acfm) ^d	
	211.0			1104		19.11
8*	175.0			946	18.50	
	142.0			786	18.07	
	111.0			610	18.20	
	62.0		c, d	352	-	17.61
9* 10	Total Package Isentropic Effic	-	er at Zero Flow	0.0 70.70		<u>kW</u> %
11	Specific Power (KW7100 ACFM)	35.00 30.00 25.00 20.00				
		15.00	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, -	500 600 700 8 Capacity (ACFM) ual representation of the data in + 5kW/100acfm increments if nece to 25% over maximum capacity	800 900 100 Section 8 ssary above 35	0 1100 1200
Consult C NOTES:	CAGI website for a list a. Measured a ACFM is a b. The operat c. No Load P- manufactu d. Tolerance i NOTE: Th Volume Flow at specified cor	15.00 10.00 0 to f participa at the discharg ctual cubic fee ng pressure at ower. In acco over may state " s specified in e terms "power // Rate additions	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 10 to 35, X-Axis Scale, 0 Formance Verification Prints in the third party ver e terminal point of the cor t per minute at inlet condi which the Capacity (Item relance with ISO 1217, An not significant" or "0" on ISO 1217, Annex E, as sh er" and "energy" are synor	Capacity (ACFM) ual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordan titions. 18) and Electrical Consumpti nex E, if measurement of no the test report. own in table below: hymous for purposes of this of Specific Energy Consumption	Section 8 ssary above 35 rified by the thin www.cagi.org nee with ISO 121 ion (Item 8) were load power equa document.	d party administrate 7, Annex E; measured for this dat
Consult C	CAGI website for a list a. Measured a ACFM is a b. The operat c. No Load P manufactur d. Tolerance i NOTE: Th Volume Flow at specified con <u>m³/min</u> <u>f³</u> <u>Below</u>	15.00 10.00 0 The CAGI Per: t of participa t the discharg ctual cubic fet ng pressure at s specified in e terms "power / Rate	Note: Graph is only a vis Note: Y-Axis Scale, 10 to 35, X-Axis Scale, 0 Formance Verification Prints in the third party ver e terminal point of the cor t per minute at inlet condi which the Capacity (Item relance with ISO 1217, An not significant" or "0" on 1 (SO 1217, Annex E, as sh er" and "energy" are synor	Capacity (ACFM) ual representation of the data in + \$kW/100acfm increments if nece 0 to 25% over maximum capacity rogram, these items are ve ification program: mpressor package in accordantions. (8) and Electrical Consumpti nex E, if measurement of no the test report. own in table below: mymous for purposes of this of Specific Energy	Section 8 ssary above 35 rified by the thin www.cagi.org nce with ISO 121 ion (Item 8) were load power equa locument.	d party administrate 7, Annex E; measured for this dat

17.6 to 53 53 to 529.7 1.5 to 15 +/- 5 Above 529.7 ROT 031.1 Above 15 +/- 4

0.5 to 1.5

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 7

+/- 6

+/- 5

+/- 10%

+/- 6

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1		DEL DATA - FU	OR COMPRESSE	JAIN	
	Manufacturer: FS-Cu	ırtis			
	Model Number: NxV1	85-115		Date:	03/03/21
2	X Air-cooled	Water-cooled		Type:	Screw
				# of Stages:	1
3*	Full Load Operating Press	ure	115	" of Stages.	psig
4	Drive Motor Nominal Rati		250		hp
5	Drive Motor Nominal Effi	•	96.2		percent
6	Fan Motor Nominal Rating	g (if applicable)	6		hp
7	Fan Motor Nominal Efficie	ency	89.5		percent
	Input Power (kW)		Capacity (acfm) ^{a,d}		pecific Power W/100 acfm) ^d
	225.0		1050	21.43	
8*	191.0		930	20.54	
	155.0		775	20.00	
	115.0	613	18.76		
	59.0		315		18.73
9*	Total Package Input Power	r at Zero Flow ^{c, d}	0.0		kW
10	Isentropic Efficiency		73.40		%
11	30.00 30.00 25.00 15.00 10.00 0 1		500 600 700 8 Sapacity (ACFM) ual representation of the data in	800 900 100 Section 8	0 1100 1200
	N	lote: Y-Axis Scale, 10 to 35, 4	5kW/100acfm increments if nece to 25% over maximum capacity		
	ACFM is actual cubic feet b. The operating pressure at c. No Load Power. In accor manufacturer may state 'n d. Tolerance is specified in I	ts in the third party ver terminal point of the con the reminute at inlet condi- which the Capacity (Item dance with ISO 1217, An tot significant" or "0" on the SO 1217, Annex E, as sho	rogram, these items are ve ification program: npressor package in accordan tions. 8) and Electrical Consumpt nex E, if measurement of no the test report.	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa	7, Annex E; measured for this data
Consult C NOTES:	 CAGI website for a list of participan Measured at the discharge ACFM is actual cubic feet The operating pressure at No Load Power. In acconmanufacturer may state "md. Tolerance is specified in I 	ts in the third party ver terminal point of the con the reminute at inlet condi- which the Capacity (Item dance with ISO 1217, An tot significant" or "0" on the SO 1217, Annex E, as sho	rogram, these items are ve ification program: npressor package in accordan tions. 8) and Electrical Consumptine nex E, if measurement of no the test report. own in table below:	www.cagi.org nee with ISO 121 ion (Item 8) were load power equa	7, Annex E; measured for this data

Me

		me Flow Rate	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power
	m^3 / min	<u>ft³ / min</u>	%	%	%
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
T 031.1	Above 15	Above 529.7	+/- 4	+/- 5	

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1 2 3* 4 5 6 7	Manufacturer: Model Numbe X Air-co Full Load Ope Drive Motor N	r: NxV1	urtis 185-125 Water-cooled		Date:	03/03/21
3* 4 5 6	X Air-co	ooled	1		ľ	03/03/21
3* 4 5 6	Full Load Ope		Water-cooled			
4 5 6		rating Dra-			Type:	Screw
4 5 6		rating Dra			# of Stages:	1
5 6		raung Press	bure	125		psig ^b
6				250		hp
	Drive Motor N	lominal Eff	iciency	96.2	percent	
7	Fan Motor Nor	minal Ratin	g (if applicable)	6		hp
-	Fan Motor Nor	minal Effici	iency	89.5		percent
	Input Power (kW)			Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d	
	220.0)		1031		21.34
8*	187.0)		896		20.87
	151.0)		736		20.52
	119.0			577	20.62	
0.*	72.0			358	20.11	
9*	Total Package	-	er at Zero Flow	0.0	kW	
10	Isentropic Effi	ciency		ļ		%
11	Specific Power (kW/100 ACFM)	25.00		Capacity (ACFM)		
For models	that are tested in t		Note: Y-Axis Scale, 10 to 35, X-Axis Scale,	sual representation of the data in + 5kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve	ssary above 35	rd party administrator
NOTES:	 a. Measured a ACFM is a b. The operat c. No Load P manufactur d. Tolerance 	at the discharg actual cubic feo ing pressure at ower. In acco rer may state " is specified in	et per minute at inlet conc which the Capacity (Iten rdance with ISO 1217, Ar not significant" or "0" on ISO 1217, Annex E, as sl	mpressor package in accordant litions. a 8) and Electrical Consumpti nex E, if measurement of no the test report.	ion (Item 8) were load power equa	measured for this data
	Volume Flow	v Rate		Specific Energy	Zero Flow	
	at specified co	nditions	Volume Flow Rate	Consumption	Power	
	at specified comparison $\frac{n^3 / \min}{1 + \frac{1}{2}}$		Volume Flow Rate % +/- 7		Power %	

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15

ROT 031.1

COMPRESSOR DATA SHEET

In Accordance With Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		MC	DDEL DATA - FO	OR COMPRESSE	J AIK	
1	Manufacturer: FS-Curtis					
	Model Numbe	er: NxV	185-150		Date:	03/03/21
2	X Air-c	ooled	Water-cooled		Type:	Screw
					# of Stages:	1
3*	Full Load Ope	erating Pres	sure	150	" of Buges.	psig ^b
4	Drive Motor N			250		hp
5	Drive Motor N	Nominal Ef	ficiency	96.2		percent
6	Fan Motor No	minal Rati	ng (if applicable)	6		hp
7	Fan Motor No	minal Effic	eiency	89.5		percent
	Input Power (kW)			Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d	
	214.0	0		929		23.04
8*	189.0			815		23.19
	160.0			700		22.86
	132.0			575		22.96
	79.0		c, d	349		22.64
9*	-	-	er at Zero Flow ^{c, a}	0.0		kW
10	Isentropic Effi	iciency				%
11	Specific Power (kW100 ACFM)	25.00 20.00 15.00 10.00 0		0 500 600 700 8 Capacity (ACFM)		20 1100 1200
			Note: Graph is only a vi Note: V-Avis Scale, 10 to 35	sual representation of the data in	Section 8	
Consult C	CAGI website for a list	st of particip	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, formance Verification F ants in the third party ve	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ver rification program:	rified by the this www.cagi.org	
	CAGI website for a lit a. Measured ACFM is i b. The opera c. No Load F manufactu d. Tolerance	st of participa at the dischar actual cubic fo ting pressure a Power. In accu rrer may state is specified ir	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification F ants in the third party ve ge terminal point of the co tet per minute at inlet cond t which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" on ISO 1217, Annex E, as sl	 + \$kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordantitions. n 8) and Electrical Consumptionnex E, if measurement of no the test report. 	rified by the this www.cagi.org nce with ISO 121 ion (Item 8) were load power equa	7, Annex E; e measured for this data
Consult C NOTES:	CAGI website for a lit a. Measured ACFM is i b. The opera c. No Load F manufactu d. Tolerance	st of particip: at the dischar actual cubic fo ting pressure : Power. In accurer may state is specified ir he terms "pow w Rate	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification F ants in the third party ve ge terminal point of the co tet per minute at inlet cond t which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" on ISO 1217, Annex E, as sl	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. n 8) and Electrical Consumpti nnex E, if measurement of no the test report. nown in table below:	rified by the this www.cagi.org nce with ISO 121 ion (Item 8) were load power equa	7, Annex E; e measured for this data
Consult C NOTES:	CAGI website for a lit a. Measured ACFM is i b. The opera c. No Load F manufactu d. Tolerance NOTE: T Volume Flo at specified co <u>m³/min</u> <u>ft</u>	st of particip: at the dischar actual cubic fo ting pressure : Power. In accurer may state is specified ir he terms "pow w Rate	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification I ants in the third party ve ge terminal point of the co cet per minute at inlet conc t which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" on ISO 1217, Annex E, as sl ver" and "energy" are syno	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. a 8) and Electrical Consumpt: nex E, if measurement of no the test report. nown in table below: nymous for purposes of this of Specific Energy	rified by the thi www.cagi.org nce with ISO 121 ion (Item 8) were load power equa document.	7, Annex E; e measured for this data
Consult C NOTES:	CAGI website for a lit a. Measured ACFM is : b. The opera c. No Load F manufactu d. Tolerance NOTE: T Volume Flor at specified co <u>m³/min</u> <u>fi</u>	st of particip: at the dischar actual cubic fa Power. In accurer may state is specified ir he terms "pow w Rate onditions	Note: Y-Axis Scale, 10 to 35, X-Axis Scale, rformance Verification I ants in the third party ve ge terminal point of the co et per minute at inlet conc t which the Capacity (Iter ordance with ISO 1217, A "not significant" or "0" on ISO 1217, Annex E, as sl ver" and "energy" are syno Volume Flow Rate	+ \$kW/100acfm increments if nece 0 to 25% over maximum capacity Program, these items are ve rification program: mpressor package in accordan litions. a 8) and Electrical Consumpti nex E, if measurement of no the test report. nown in table below: nymous for purposes of this of Specific Energy Consumption	rified by the thi www.cagi.org nee with ISO 121 ion (Item 8) were load power equa document.	7, Annex E; e measured for this data

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

+/- 6

+/- 5

+/- 5

+/- 4

53 to 529.7

Above 529.7

1.5 to 15

Above 15